基于GA算法的TSP最短路径搜索matlab仿真

简介: 基于GA算法的TSP最短路径搜索matlab仿真

1.算法描述
(1)编码:将问题的候选解用染色体表示,实现解空间向编码空间的映射过程。遗传算法不直接处理解空间的决策变量,而是将其转换成由基因按一定结构组成的染色体。编码方式有很多,如二进制编码、实数向量编码、整数排列编码、通用数据结构编码等等。本文将采用二进制编码的方式,将十进制的变量转换成二进制,用0和1组成的数字串模拟染色体,可以很方便地实现基因交叉、变异等操作。

(2)种群初始化:产生代表问题可能潜在解集的一个初始群体(编码集合)。种群规模设定主要有以下方面的考虑:从群体多样性方面考虑,群体越大越好,避免陷入局部最优;从计算效率方面考虑,群体规模越大将导致计算量的增加。应该根据实际问题确定种群的规模。产生初始化种群的方法通常有两种:一是完全随机的方法产生;二是根据先验知识设定一组必须满足的条件,然后根据这些条件生成初始样本。

(3)计算个体适应度:利用适应度函数计算各个个体的适应度大小。适应度函数(Fitness Function)的选取直接影响到遗传算法的收敛速度以及能否找到最优解,因为在进化搜索中基本不利用外部信息,仅以适应度函数为依据,利用种群每个个体的适应程度来指导搜索。

(4)进化计算:通过选择、交叉、变异,产生出代表新的解集的群体。选择(selection):根据个体适应度大小,按照优胜劣汰的原则,淘汰不合理的个体;交叉(crossover):编码的交叉重组,类似于染色体的交叉重组;变异(mutation):编码按小概率扰动产生的变化,类似于基因突变。

(5)解码:末代种群中的最优个体经过解码实现从编码空间向解空间的映射,可以作为问题的近似最优解。这是整个遗传算法的最后一步,经过若干次的进化过程,种群中适应度最高的个体代表问题的最优解,但这个最优解还是一个由0和1组成的数字串,要将它转换成十进制才能供我们理解和使用。

    旅行商问题,即TSP(Traveling Salesman Problem)是数学领域中著名问题之一。假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求求得的路径路程为所有路径之中的最小值。TSP问题是一个组合优化问题,该问题可以被证明具有NPC计算复杂性。因此,任何能使该问题的求解得以简化的方法,都将受到高度的评价和关注。
    遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程。它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体。这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代。后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程。群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解。要求利用遗传算法求解TSP问题的最短路径。

2.仿真效果预览
matlab2022a仿真结果如下:

1.png
2.png

3.MATLAB核心程序

configStruct = get_config(defaultConfig,userConfig);
 
% Extract configuration
xy          = configStruct.xy;
dmat        = configStruct.dmat;
popSize     = configStruct.popSize;
numIter     = configStruct.numIter;
showProg    = configStruct.showProg;
showResult  = configStruct.showResult;
showWaitbar = configStruct.showWaitbar;
if isempty(dmat)
    nPoints = size(xy,1);
    a = meshgrid(1:nPoints);
    dmat = reshape(sqrt(sum((xy(a,:)-xy(a',:)).^2,2)),nPoints,nPoints);
end
 
% Verify Inputs
[N,dims] = size(xy);
[nr,nc] = size(dmat);
if N ~= nr || N ~= nc
    error('Invalid XY or DMAT inputs!')
end
n = N;
 
% Sanity Checks
popSize     = 4*ceil(popSize/4);
numIter     = max(1,round(real(numIter(1))));
showProg    = logical(showProg(1));
showResult  = logical(showResult(1));
showWaitbar = logical(showWaitbar(1));
 
% Initialize the Population
pop = zeros(popSize,n);
pop(1,:) = (1:n);
for k = 2:popSize
    pop(k,:) = randperm(n);
end
 
% Run the GA
globalMin = Inf;
totalDist = zeros(1,popSize);
distHistory = zeros(1,numIter);
tmpPop = zeros(4,n);
newPop = zeros(popSize,n);
if showProg
    figure('Name','TSPO_GA | Current Best Solution','Numbertitle','off');
    hAx = gca;
end
if showWaitbar
    hWait = waitbar(0,'Searching for near-optimal solution ...');
end
for iter = 1:numIter
    % Evaluate Each Population Member (Calculate Total Distance)
    for p = 1:popSize
        d = 0; % Open Path
        for k = 2:n
            d = d + dmat(pop(p,k-1),pop(p,k));
        end
        totalDist(p) = d;
    end
    
    % Find the Best Route in the Population
    [minDist,index] = min(totalDist);
    distHistory(iter) = minDist;
    if minDist < globalMin
        globalMin = minDist;
        optRoute = pop(index,:);
        if showProg
            % Plot the Best Route
            if dims > 2, plot3(hAx,xy(optRoute,1),xy(optRoute,2),xy(optRoute,3),'r.-');
            else plot(hAx,xy(optRoute,1),xy(optRoute,2),'r.-'); end
            title(hAx,sprintf('Total Distance = %1.4f, Iteration = %d',minDist,iter));
            drawnow;
        end
    end
    
    % Genetic Algorithm Operators
    randomOrder = randperm(popSize);
    for p = 4:4:popSize
        rtes = pop(randomOrder(p-3:p),:);
        dists = totalDist(randomOrder(p-3:p));
        [ignore,idx] = min(dists); %#ok
        bestOf4Route = rtes(idx,:);
        routeInsertionPoints = sort(ceil(n*rand(1,2)));
        I = routeInsertionPoints(1);
        J = routeInsertionPoints(2);
        for k = 1:4 % Mutate the Best to get Three New Routes
            tmpPop(k,:) = bestOf4Route;
            switch k
                case 2 % Flip
                    tmpPop(k,I:J) = tmpPop(k,J:-1:I);
                case 3 % Swap
                    tmpPop(k,[I J]) = tmpPop(k,[J I]);
                case 4 % Slide
                    tmpPop(k,I:J) = tmpPop(k,[I+1:J I]);
                otherwise % Do Nothing
            end
        end
        newPop(p-3:p,:) = tmpPop;
    end
    pop = newPop;
    
    % Update the waitbar
    if showWaitbar && ~mod(iter,ceil(numIter/325))
        waitbar(iter/numIter,hWait);
    end
    
end
A104
相关文章
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于DCT变换和位平面分解的数字水印嵌入提取算法matlab仿真
这是一个关于数字水印算法的摘要:使用MATLAB2022a实现,结合DCT和位平面分解技术。算法先通过DCT变换将图像转至频域,随后利用位平面分解嵌入水印,确保在图像处理后仍能提取。核心程序包括水印嵌入和提取,以及性能分析部分,通过PSNR和NC指标评估水印在不同噪声条件下的鲁棒性。
|
3天前
|
算法 数据安全/隐私保护 C++
基于二维CS-SCHT变换和扩频方法的彩色图像水印嵌入和提取算法matlab仿真
该内容是关于一个图像水印算法的描述。在MATLAB2022a中运行,算法包括水印的嵌入和提取。首先,RGB图像转换为YUV格式,然后水印通过特定规则嵌入到Y分量中,并经过Arnold置乱增强安全性。水印提取时,经过逆过程恢复,使用了二维CS-SCHT变换和噪声对比度(NC)计算来评估水印的鲁棒性。代码中展示了从RGB到YUV的转换、水印嵌入、JPEG压缩攻击模拟以及水印提取的步骤。
|
4天前
|
机器学习/深度学习 算法 数据可视化
基于BP神经网络的32QAM解调算法matlab性能仿真
```markdown - 32QAM解调算法运用BP神经网络在matlab2022a中实现,适应复杂通信环境。 - 网络结构含输入、隐藏和输出层,利用梯度下降法优化,以交叉熵损失最小化为目标训练。 - 训练后,解调通过前向传播完成,提高在噪声和干扰中的数据恢复能力。 ``` 请注意,由于字符限制,部分详细信息(如具体图示和详细步骤)未能在摘要中包含。
|
6天前
|
机器学习/深度学习 算法 网络架构
基于yolov2深度学习网络的单人口罩佩戴检测和人脸定位算法matlab仿真
摘要:该内容展示了一个基于YOLOv2的单人口罩佩戴检测和人脸定位算法的应用。使用MATLAB2022A,YOLOv2通过Darknet-19网络和锚框技术检测图像中的口罩佩戴情况。核心代码段展示了如何处理图像,检测人脸并标注口罩区域。程序会实时显示检测结果,等待一段时间以优化显示流畅性。
|
8天前
|
机器学习/深度学习 算法
m基于GA-GRU遗传优化门控循环单元网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,一个基于遗传算法优化的GRU网络展示显著优化效果。优化前后的电力负荷预测图表显示了改进的预测准确性和效率。GRU,作为RNN的一种形式,解决了长期依赖问题,而遗传算法用于优化其超参数,如学习率和隐藏层单元数。核心MATLAB程序执行超过30分钟,通过迭代和适应度评估寻找最佳超参数,最终构建优化的GRU模型进行负荷预测,结果显示预测误差和模型性能的提升。
25 4
|
8天前
|
机器学习/深度学习 算法 数据可视化
基于BP神经网络的16QAM解调算法matlab性能仿真
这是一个关于使用MATLAB2022a实现的16QAM解调算法的摘要。该算法基于BP神经网络,利用其非线性映射和学习能力从复数信号中估计16QAM符号,具有良好的抗噪性能。算法包括训练和测试两个阶段,通过反向传播调整网络参数以减小输出误差。核心程序涉及数据加载、可视化以及神经网络训练,评估指标为误码率(BER)和符号错误率(SER)。代码中还包含了星座图的绘制和训练曲线的展示。
|
18天前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
10天前
|
机器学习/深度学习 算法
基于BP神经网络的QPSK解调算法matlab性能仿真
该文介绍了使用MATLAB2022a实现的QPSK信号BP神经网络解调算法。QPSK调制信号在复杂信道环境下受到干扰,BP网络能适应性地补偿失真,降低误码率。核心程序涉及数据分割、网络训练及性能评估,最终通过星座图和误码率曲线展示结果。
|
11天前
|
机器学习/深度学习 算法 计算机视觉
基于yolov2深度学习网络模型的鱼眼镜头中人员检测算法matlab仿真
该内容是一个关于基于YOLOv2的鱼眼镜头人员检测算法的介绍。展示了算法运行的三张效果图,使用的是matlab2022a软件。YOLOv2模型结合鱼眼镜头畸变校正技术,对鱼眼图像中的人员进行准确检测。算法流程包括图像预处理、网络前向传播、边界框预测与分类及后处理。核心程序段加载预训练的YOLOv2检测器,遍历并处理图像,检测到的目标用矩形标注显示。
|
14天前
|
算法
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长
MATLAB 2022a仿真实现了LDPC码的性能分析,展示了不同码长对纠错能力的影响。短码长LDPC码收敛快但纠错能力有限,长码长则提供更强纠错能力但易陷入局部最优。核心代码通过循环进行误码率仿真,根据EsN0计算误比特率,并保存不同码长(12-768)的结果数据。
43 9
m基于BP译码算法的LDPC编译码matlab误码率仿真,对比不同的码长