Python基础算法解析:支持向量机(SVM)

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: Python基础算法解析:支持向量机(SVM)

支持向量机(Support Vector Machine,SVM)是一种用于分类和回归分析的机器学习算法,它通过在特征空间中找到一个最优的超平面来进行分类。本文将详细介绍支持向量机的原理、实现步骤以及如何使用Python进行编程实践。

什么是支持向量机?

支持向量机是一种监督学习算法,它可以用于分类和回归任务。在分类问题中,SVM的目标是找到一个超平面,将不同类别的数据点分开。这个超平面的选择是通过最大化间隔(即两个类别最近的数据点到超平面的距离)来完成的。SVM不仅可以处理线性可分的情况,还可以通过核技巧处理非线性可分的情况。

支持向量机的原理

在二维空间中,一个超平面可以用一个线性方程来表示:

image.png

支持向量机的实现步骤

  • 数据预处理:包括数据清洗、特征选择、特征缩放等。
  • 构建模型:选择合适的核函数(如线性核、多项式核、径向基函数核等)。
  • 训练模型:通过优化算法(如SMO算法)寻找最优的超平面。
  • 预测:根据训练好的模型,对新的数据进行分类预测。

    Python实现支持向量机

    下面我们通过Python代码来演示如何使用支持向量机进行分类:
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score

# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 构建支持向量机模型
svm_model = SVC(kernel='linear', C=1.0)

# 训练模型
svm_model.fit(X_train, y_train)

# 预测
y_pred = svm_model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

在上述代码中,我们使用了scikit-learn库中的SVC类来构建支持向量机模型,并使用鸢尾花数据集进行训练和测试。

总结

支持向量机是一种强大且灵活的分类算法,它在许多实际问题中都表现出色。通过本文的介绍,你已经了解了支持向量机的原理、实现步骤以及如何使用Python进行编程实践。希望本文能够帮助你更好地理解和应用支持向量机算法。

目录
相关文章
|
13天前
|
机器学习/深度学习 JSON Java
Java调用Python的5种实用方案:从简单到进阶的全场景解析
在机器学习与大数据融合背景下,Java与Python协同开发成为企业常见需求。本文通过真实案例解析5种主流调用方案,涵盖脚本调用到微服务架构,助力开发者根据业务场景选择最优方案,提升开发效率与系统性能。
147 0
|
7天前
|
存储 大数据 Unix
Python生成器 vs 迭代器:从内存到代码的深度解析
在Python中,处理大数据或无限序列时,迭代器与生成器可避免内存溢出。迭代器通过`__iter__`和`__next__`手动实现,控制灵活;生成器用`yield`自动实现,代码简洁、内存高效。生成器适合大文件读取、惰性计算等场景,是性能优化的关键工具。
100 2
|
13天前
|
机器学习/深度学习 文字识别 Java
Python实现PDF图片OCR识别:从原理到实战的全流程解析
本文详解2025年Python实现扫描PDF文本提取的四大OCR方案(Tesseract、EasyOCR、PaddleOCR、OCRmyPDF),涵盖环境配置、图像预处理、核心识别与性能优化,结合财务票据、古籍数字化等实战场景,助力高效构建自动化文档处理系统。
210 0
|
13天前
|
机器学习/深度学习 编解码 算法
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
【机器人路径规划】基于迪杰斯特拉算法(Dijkstra)的机器人路径规划(Python代码实现)
|
13天前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于A*算法的机器人路径规划研究(Python代码实现)
【机器人路径规划】基于A*算法的机器人路径规划研究(Python代码实现)
|
13天前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于深度优先搜索(Depth-First-Search,DFS)算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于深度优先搜索(Depth-First-Search,DFS)算法的机器人路径规划(Python代码实现)
|
13天前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
|
13天前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于改进型A*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于改进型A*算法的机器人路径规划(Python代码实现)
|
机器学习/深度学习 Python 计算机视觉
python svm pca实践二
继上一片的内容,这片来·讲一下sklearn来进行简单的人脸识别,这里用的方法是pca和svm 先导入必要的包和数据集 import numpy as np import matplotlib.
2273 0
|
机器学习/深度学习 Python
python svm pca实践(一)
好久没写博客了 这里主要用python的sklearn包,来进行简单的svm的分类和pca的降维 svm是常用的分类器,其核心是在分类的时候找到一个最优的超平面,使得所有的样本与超平面之间的距离达到最小。
2990 0

推荐镜像

更多