Opencv(C++)学习系列---Laplacian拉普拉斯边缘检测算法

简介: Opencv(C++)学习系列---Laplacian拉普拉斯边缘检测算法

【1】算法简介

      Laplacian(拉普拉斯)算子是一种二阶导数算子,其具有旋转不变性,可以满足不同方向的图像边缘锐化(边缘检测)的要求。通常情况下,其算子的系数之和需要为零。 Laplacian算子具有各方向同性的特点,能够对任意方向的边缘进行提取,具有无方向性的优点,因此使用Laplacian算子提取边缘不需要分别检测X方向的边缘和Y方向的边缘,只需要一次边缘检测即可。Laplacian算子是一种二阶导数算子,对噪声比较敏感,因此常需要配合高斯滤波一起使用。

       

        需要注意,在上述图像中,计算结果的值可能为正数,也可能为负数。所以,需要对计算结果取绝对值,以保证后续运算和显示都是正确的。

【2】算法参数

void Laplacian( InputArray src, OutputArray dst, int ddepth,
                             int ksize = 1, double scale = 1, double delta = 0,
                             int borderType = BORDER_DEFAULT );

src:输入原图像,可以是灰度图像或彩色图像。

dst:输出图像,与输入图像src具有相同的尺寸和通道数

ddepth:输出图像的数据类型(深度),根据输入图像的数据类型不同拥有不同的取值范围,具体的取值范围在表5-1给出,当赋值为-1时,输出图像的数据类型自动选择。

ksize:滤波器的大小,必须为正奇数。

scale:对导数计算结果进行缩放的缩放因子,默认系数为1,表示不进行缩放。

delta:偏值,在计算结果中加上偏值。

borderType:像素外推法选择标志,默认参数为BORDER_DEFAULT,表示不包含边界值倒序填充。

【3】完整代码

#include<opencv2\opencv.hpp>
#include<opencv2\imgproc\imgproc.hpp>
#include<opencv2\highgui\highgui.hpp>
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
  //载入原始图
  Mat src = imread("E:\\乔大花进度\\11-28\\边缘检测\\4.jpg");
  //【1】定义变量
  Mat src_gray, dst, abs_dst;
  //【2】显示原图
  imshow("原始图",src);
  //【3】使用高斯滤波消除噪声
  GaussianBlur(src,src,Size(3,3),0,0,BORDER_DEFAULT);
  //【4】转为灰度图
  cvtColor(src,src_gray,COLOR_BGR2GRAY);
  //【5】Laplacian查找边缘
  Laplacian(src_gray,dst,CV_16S,3,1,0);
  //【6】计算绝对值,并将结果转为8位
  convertScaleAbs(dst,abs_dst);
  //【7】显示效果图
  imshow("Laplacian变换",abs_dst);
  cout << "Laplacian算法输出图像的通道" << abs_dst.channels() << endl;
  waitKey(0);
  system("pause");
  destroyAllWindows();
  return 0;
}

运行结果:

相关文章
|
2天前
|
算法 计算机视觉
OpenCV高斯差分技术实现图像边缘检测
OpenCV高斯差分技术实现图像边缘检测
|
3天前
|
NoSQL 算法 Java
【redis源码学习】持久化机制,java程序员面试算法宝典pdf
【redis源码学习】持久化机制,java程序员面试算法宝典pdf
|
4天前
|
机器学习/深度学习 算法 网络架构
什么是神经网络学习中的反向传播算法?
什么是神经网络学习中的反向传播算法?
9 2
|
4天前
|
机器学习/深度学习 算法
算法人生(5):从“元学习”看“战胜拖延”(没兴趣版)
元学习是让机器学会学习策略,适应新任务的机器学习范式。通过定义任务分布、采样任务、内在和外在学习循环来优化模型,增强其跨任务适应性和泛化能力。面对不感兴趣的任务导致的拖延,我们可以借鉴元学习的思路:重新评估任务价值,寻找通用兴趣点;设定奖励激发行动;改变环境以提高执行力。通过调整视角、自我激励和优化环境,可以克服因无兴趣而产生的拖延。
|
4天前
|
机器学习/深度学习 存储 算法
算法人生(4):从“选项学习”看“战胜拖延”(担心失败版)
选项学习是强化学习的一种策略,通过定义、学习和切换选项来解决复杂任务,将大任务分解为可重复使用的子任务,以提高学习效率和适应性。面对因担心失败而拖延的问题,我们可以借鉴选项学习的思想:将大任务拆分为小目标,正视失败作为成长的一部分,回顾成功经验并寻求支持。通过这种方式,逐步增强自信,降低拖延现象。
|
4天前
|
算法 网络协议
【计网·湖科大·思科】实验三 总线型以太网的特性、集线器和交换机的区别、交换机的自学习算法
【计网·湖科大·思科】实验三 总线型以太网的特性、集线器和交换机的区别、交换机的自学习算法
8 1
|
4天前
|
机器学习/深度学习 算法
应用规则学习算法识别有毒的蘑菇
应用规则学习算法识别有毒的蘑菇
|
4天前
|
机器学习/深度学习 算法 数据挖掘
【Python机器学习专栏】关联规则学习:Apriori算法详解
【4月更文挑战第30天】Apriori算法是一种用于关联规则学习的经典算法,尤其适用于购物篮分析,以发现商品间的购买关联。该算法基于支持度和置信度指标,通过迭代生成频繁项集并提取满足阈值的规则。Python中可借助mlxtend库实现Apriori,例如处理购物篮数据,设置支持度和置信度阈值,找出相关规则。
|
4天前
|
机器学习/深度学习 算法 前端开发
【Python机器学习专栏】集成学习算法的原理与应用
【4月更文挑战第30天】集成学习通过组合多个基学习器提升预测准确性,广泛应用于分类、回归等问题。主要步骤包括生成基学习器、训练和结合预测结果。算法类型有Bagging(如随机森林)、Boosting(如AdaBoost)和Stacking。Python中可使用scikit-learn实现,如示例代码展示的随机森林分类。集成学习能降低模型方差,缓解过拟合,提高预测性能。
|
4天前
|
计算机视觉
【OpenCV】-边缘检测汇总示例
【OpenCV】-边缘检测汇总示例