基于BP神经网络的QPSK解调算法matlab性能仿真

简介: 该文介绍了使用MATLAB2022a实现的QPSK信号BP神经网络解调算法。QPSK调制信号在复杂信道环境下受到干扰,BP网络能适应性地补偿失真,降低误码率。核心程序涉及数据分割、网络训练及性能评估,最终通过星座图和误码率曲线展示结果。

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
QPSK(Quadrature Phase Shift Keying)是一种常见的数字调制方式,通过载波的四种相位状态来传输两比特信息。在接收端,准确解调出原始数据成为关键任务。传统的方法如相干解调虽有效但对同步要求较高,而基于BP(Back Propagation)神经网络的解调算法提供了一种自适应、非线性处理手段,尤其适用于复杂信道条件下的解调。

   QPSK信号在经过信道传输后,会受到噪声干扰、多径效应等影响,导致星座点偏移或失真,增加了传统解调方法的误码率。BP神经网络以其强大的非线性拟合能力和自适应学习能力,能够学习并补偿这些失真,从而实现更稳健的解调。

   假设接收到的QPSK信号为s(t),经过匹配滤波器后得到基带信号r(t),通过采样得到离散信号{r[n]},作为BP神经网络的输入。网络的输出层设计为四个神经元,分别对应QPSK的四种相位状态,输出概率最大的神经元所对应的相位即为解调结果。

   设输入层节点数为NI,隐藏层节点数为NH,输出层节点数为NO=4(对应QPSK的四个相位)。网络权重矩阵分别为W(1)(输入到隐藏层)和W(2)(隐藏层到输出层),偏置向量为b(1)和b(2)。

   对于输入向量x,第j个隐藏层神经元的激活值aj(1)计算如下:

image.png

   利用已知的QPSK信号样本集对网络进行训练,不断迭代上述过程直至收敛。训练完成后,使用测试集验证网络性能,通过比较解调出的比特序列与原序列的差异来评估误码率(BER)。

4.部分核心程序

```for ij = 1:length(SNR)
ij
for j = 1:20
% 数据划分比例
divT = 0.05; % 训练数据占全部数据的20%
divV = 0.2; % 验证数据占全部数据的10%
% 分割训练集和验证集
SrxT = Srx(1,1:floor(divTlength(Srx)));% 训练集信号
StxT = Stx(1,1:floor(divT
length(Stx)));% 训练集期望结果
SrxV = Srx(1 ,floor(divTlength(Srx))+1:floor((divT+divV)length(Srx)));% 验证集信号
StxV = Stx(1 ,floor(divTlength(Stx))+1:floor((divT+divV)length(Stx)));% 验证集期望结果

    %为每个神经网络寻找最佳超参数组合
    [accuracy,yfit] = func_ANN_qpsk(Si, Sh, Nlabel, lambda, IQmap, SrxT, StxT, SrxV, StxV);
    err(ij,j)=1-accuracy/100;
end

end

% 调用函数绘制星座图,展示数据的10%
func_constellation(Srx,Stx,0.5)

figure;
semilogy(SNR,mean(err,2),'b-o');
grid on
xlabel('SNR');
ylabel('误码率');
legend('QPSK误码率');

figure
plot(yfit,'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
xlabel('训练迭代次数');
ylabel('神经网络训练曲线');

```

相关文章
|
5月前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
162 0
|
4月前
|
存储 机器学习/深度学习 监控
网络管理监控软件的 C# 区间树性能阈值查询算法
针对网络管理监控软件的高效区间查询需求,本文提出基于区间树的优化方案。传统线性遍历效率低,10万条数据查询超800ms,难以满足实时性要求。区间树以平衡二叉搜索树结构,结合节点最大值剪枝策略,将查询复杂度从O(N)降至O(logN+K),显著提升性能。通过C#实现,支持按指标类型分组建树、增量插入与多维度联合查询,在10万记录下查询耗时仅约2.8ms,内存占用降低35%。测试表明,该方案有效解决高负载场景下的响应延迟问题,助力管理员快速定位异常设备,提升运维效率与系统稳定性。
270 4
|
4月前
|
机器学习/深度学习 算法
采用蚁群算法对BP神经网络进行优化
使用蚁群算法来优化BP神经网络的权重和偏置,克服传统BP算法容易陷入局部极小值、收敛速度慢、对初始权重敏感等问题。
422 5
|
5月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
374 2
|
4月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
213 0
|
5月前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
133 8
|
5月前
|
算法 数据挖掘 区块链
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
157 2
|
4月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
449 0
|
4月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
265 0
|
4月前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
159 0

热门文章

最新文章