基于yolov2深度学习网络模型的鱼眼镜头中人员检测算法matlab仿真

简介: 该内容是一个关于基于YOLOv2的鱼眼镜头人员检测算法的介绍。展示了算法运行的三张效果图,使用的是matlab2022a软件。YOLOv2模型结合鱼眼镜头畸变校正技术,对鱼眼图像中的人员进行准确检测。算法流程包括图像预处理、网络前向传播、边界框预测与分类及后处理。核心程序段加载预训练的YOLOv2检测器,遍历并处理图像,检测到的目标用矩形标注显示。

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
基于YOLOv2深度学习网络模型的鱼眼镜头中人员检测算法结合了YOLOv2的高效目标检测能力和对鱼眼镜头畸变的校正处理,以实现对鱼眼图像中人员的准确识别。YOLOv2(You Only Look Once Version 2)由Joseph Redmon等人提出,它在YOLOv1的基础上进行了多项改进,包括引入了批量归一化、高分辨率分类器、多尺度预测、以及使用了新的网络结构Darknet-19。YOLOv2的核心思想是将图像划分为S×S的网格,每个网格预测B个边界框(bounding boxes),以及这些框内物体的类别概率和置信度。

   鱼眼镜头产生的图像畸变主要是桶形畸变,可通过多项式模型进行校正。最常用的校正模型是Brown-Conrady模型,其畸变系数为k1,k2,k3(径向畸变)和p1,p2(切向畸变)。

   在鱼眼镜头环境下应用YOLOv2,首先需要对原始图像进行畸变校正,消除桶形畸变。然后,使用校正后的图像作为输入,通过YOLOv2网络进行目标检测。

预处理:包括图像缩放、归一化等,确保输入符合网络要求。
网络前向传播:输入图像经过一系列卷积层、批量归一化层、激活函数层等,最终产生特征图,每个特征图的每个单元对应原图中的一个网格。
边界框预测与分类:每个网格预测多个边界框及其对应的类别概率和置信度。
后处理:非极大值抑制(Non-Maximum Suppression, NMS)用于去除重叠的预测框,仅保留置信度最高的预测结果。
对于鱼眼镜头的特定场景,可能需要对YOLOv2网络进行微调,以适应畸变校正后图像的特点。这包括调整网络结构(如增加或减少某些层)、修改损失函数的权重参数、以及对网络进行针对性训练,使用包含大量鱼眼镜头下人员样本的数据集。

4.部分核心程序
```load yolov2.mat% 加载训练好的目标检测器
img_size= [448,448];
imgPath = 'test/'; % 图像库路径
cnt = 0;

for i = 1:12 % 遍历结构体就可以一一处理图片了
i

figure

img = imread([imgPath [num2str(i),'.jpg']]); %读取每张图片 
I               = imresize(img,img_size(1:2));
[bboxes,scores] = detect(detector,I,'Threshold',0.48);



if ~isempty(bboxes) % 如果检测到目标
    idx = [];
    I = insertObjectAnnotation(I,'rectangle',bboxes,scores,FontSize=8);% 在图像上绘制检测结果
end

imshow(I, []);  % 显示带有检测结果的图像

pause(0.01);% 等待一小段时间,使图像显示更流畅
if cnt==1
   cnt=0;
end

end

```

相关文章
YOLOv8打印模型结构配置信息并查看网络模型详细参数:参数量、计算量(GFLOPS)
YOLOv8打印模型结构配置信息并查看网络模型详细参数:参数量、计算量(GFLOPS)
|
2天前
|
机器学习/深度学习 数据采集 自然语言处理
【注意力机制重大误区】网络模型增加注意力机制后,性能就一定会得到提升?有哪些影响因素?
【注意力机制重大误区】网络模型增加注意力机制后,性能就一定会得到提升?有哪些影响因素?
|
2天前
|
机器学习/深度学习 算法
m基于PSO-GRU粒子群优化长门控循环单元网络的电力负荷数据预测算法matlab仿真
摘要: 在MATLAB 2022a中,对比了电力负荷预测算法优化前后的效果。优化前为"Ttttttt111222",优化后为"Tttttttt333444",明显改进体现为"Tttttttttt5555"。该算法结合了粒子群优化(PSO)和长门控循环单元(GRU)网络,利用PSO优化GRU的超参数,提升预测准确性和稳定性。PSO模仿鸟群行为寻找最优解,而GRU通过更新门和重置门处理长期依赖问题。核心MATLAB程序展示了训练和预测过程,包括使用'adam'优化器和超参数调整,最终评估并保存预测结果。
6 0
|
2天前
|
域名解析 缓存 网络协议
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
让非算法同学也能了解 ChatGPT 等相关大模型
让非算法同学也能了解 ChatGPT 等相关大模型
|
1天前
|
算法 JavaScript 决策智能
基于禁忌搜索算法的TSP路径规划matlab仿真
**摘要:** 使用禁忌搜索算法解决旅行商问题(TSP),在MATLAB2022a中实现路径规划,显示优化曲线与路线图。TSP寻找最短城市访问路径,算法通过避免局部最优,利用禁忌列表不断调整顺序。关键步骤包括初始路径选择、邻域搜索、解评估、选择及禁忌列表更新。过程示意图展示搜索效果。
|
1天前
|
机器学习/深度学习 算法
基于BP神经网络和小波变换特征提取的烟草香型分类算法matlab仿真,分为浓香型,清香型和中间香型
```markdown 探索烟草香型分类:使用Matlab2022a中的BP神经网络结合小波变换。小波分析揭示香气成分的局部特征,降低维度,PCA等用于特征选择。BP网络随后处理这些特征,以区分浓香、清香和中间香型。 ```
|
3天前
|
算法 安全
基于龙格库塔算法的SIR病毒扩散预测matlab仿真
该程序使用龙格库塔算法实现SIR模型预测病毒扩散,输出易感、感染和康复人群曲线。在MATLAB2022a中运行显示预测结果。核心代码设置时间区间、参数,并定义微分方程组,通过Runge-Kutta方法求解。SIR模型描述三类人群动态变化,常微分方程组刻画相互转化。模型用于预测疫情趋势,支持公共卫生决策,但也存在局限性,如忽略空间结构和人口异质性。
|
3天前
|
机器学习/深度学习 监控 算法
基于yolov2深度学习网络的昆虫检测算法matlab仿真,并输出昆虫数量和大小判决
YOLOv2算法应用于昆虫检测,提供实时高效的方法识别和定位图像中的昆虫,提升检测精度。核心是统一检测网络,预测边界框和类别概率。通过预测框尺寸估算昆虫大小,适用于农业监控、生态研究等领域。在matlab2022A上运行,经过关键升级,如采用更优网络结构和损失函数,保证速度与精度。持续优化可增强对不同昆虫的检测能力。![image.png](https://ucc.alicdn.com/pic/developer-ecology/3tnl7rfrqv6tw_e760ff6682a3420cb4e24d1e48b10a2e.png)
|
4天前
|
算法 调度 决策智能
基于自适应遗传算法的车间调度matlab仿真,可以任意调整工件数和机器数,输出甘特图
这是一个使用MATLAB2022a实现的自适应遗传算法解决车间调度问题的程序,能调整工件数和机器数,输出甘特图和适应度收敛曲线。程序通过编码初始化、适应度函数、遗传操作(选择、交叉、变异)及自适应机制进行优化,目标如最小化完工时间。算法在迭代过程中动态调整参数,以提升搜索效率和全局优化。