基于yolov2深度学习网络的单人口罩佩戴检测和人脸定位算法matlab仿真

简介: 摘要:该内容展示了一个基于YOLOv2的单人口罩佩戴检测和人脸定位算法的应用。使用MATLAB2022A,YOLOv2通过Darknet-19网络和锚框技术检测图像中的口罩佩戴情况。核心代码段展示了如何处理图像,检测人脸并标注口罩区域。程序会实时显示检测结果,等待一段时间以优化显示流畅性。

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

2.算法运行软件版本
MATLAB2022A

3.算法理论概述
基于YOLOv2(You Only Look Once version 2)深度学习网络的单人口罩佩戴检测和人脸定位算法是一种结合了目标检测与特征识别的综合性解决方案,主要用于自动检测图像或视频中人物是否佩戴口罩以及定位人脸的位置。YOLOv2作为第二代YOLO算法,相较于初代在速度和精度上有了显著提升,它采用了一种称为“Darknet-19”的深度卷积神经网络架构,结合锚框(anchor boxes)的概念进行物体检测,并引入了批归一化、多尺度训练等技术来优化模型性能。

image.png

  在口罩检测和人脸定位任务中,YOLOv2首先需要被训练来识别“人脸”和“戴口罩的人脸”两种类别。这要求数据集包含大量标记好的样本,包括未戴口罩的人脸图像和戴口罩的人脸图像,以及人脸的精确边界框标注。

4.部分核心程序

``` I0 = imresize(img,img_size(1:2));
[bboxes2,scores2] = detect(detector2,I0,'Threshold',0.4)
if ~isempty(bboxes2) % 如果检测到目标
I = insertObjectAnnotation(I0,'rectangle',bboxes2,scores2,'Color', 'g');% 在图像上绘制检测结果
end
%根据口罩位置定位人脸
bboxes3 = [bboxes2(:,1)-10,bboxes2(:,2)-50,90,110];
I = insertObjectAnnotation(I,'rectangle',bboxes3,1,'Color', 'r');% 在图像上绘制检测结果
I = imresize(I,[R,C]);

subplot(122);
imshow(I, []);  % 显示带有检测结果的图像

pause(0.01);% 等待一小段时间,使图像显示更流畅
if cnt==1
   cnt=0;
end

end

```

相关文章
|
27天前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
162 0
|
27天前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
129 8
|
27天前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
139 8
|
1月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
128 2
|
2月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
185 3
|
2月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
116 6
|
1月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
1月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
2月前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
209 14
|
2月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
179 2

热门文章

最新文章