基于BP神经网络的32QAM解调算法matlab性能仿真

简介: ```markdown- 32QAM解调算法运用BP神经网络在matlab2022a中实现,适应复杂通信环境。- 网络结构含输入、隐藏和输出层,利用梯度下降法优化,以交叉熵损失最小化为目标训练。- 训练后,解调通过前向传播完成,提高在噪声和干扰中的数据恢复能力。```请注意,由于字符限制,部分详细信息(如具体图示和详细步骤)未能在摘要中包含。

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
32QAM(Quadrature Amplitude Modulation,四相幅度调制)是一种高效的数字调制技术,能够在一个信道内同时传输多比特信息。基于BP(Backpropagation)神经网络的32QAM解调算法,利用神经网络的强大非线性映射能力,直接从接收到的复数信号中估计出原始的调制符号,从而恢复数据。这种方法尤其适用于处理含有噪声、干扰和失真的复杂通信环境。

   BP神经网络是一种多层前馈网络,主要包括输入层、隐藏层和输出层。在32QAM解调应用中,网络架构可以如下设计:

image.png

    BP神经网络的训练基于梯度下降法,通过最小化损失函数(如交叉熵损失)来更新权重和偏置。训练过程包括以下步骤:

image.png

在训练完成后,解调过程简化为前向传播过程:

image.png

4.部分核心程序

```% 第一部分:加载并可视化数据
real1 = [ 5,-5,5,-5 ,3,-3, 3,-3,...
5,-5,5,-5, 3,-3, 3,-3,...
3,-3,3,-3, 1,-1, 1,-1,...
1,-1,1,-1, 1,-1, 1,-1
]./sqrt(30);

imag1= 1*[-3,-3,3, 3,-3,-3,-5,-5,...
-1,-1,1, 1,-1,-1, 1, 1,...
5,5 ,3, 3,-3,-3,-5,-5,...
5,5, 3, 3,-1,-1, 1, 1
]./sqrt(30);

IQmap = real1'+sqrt(-1)*imag1';

for ij = 1:length(SNR)
ij
for j = 1:20

    %为每个神经网络寻找最佳超参数组合
    [accuracy,yfit] = func_ANN_qpsk(Si, Sh, Nlabel, lambda, IQmap, SrxT, StxT, SrxV, StxV);
    err(ij,j)=1-accuracy/100;
end

end

% 调用函数绘制星座图,展示数据的10%
func_constellation(Srx,Stx,0.5)

figure;
semilogy(SNR,mean(err,2),'b-o');
grid on
xlabel('SNR');
ylabel('误码率');
legend('32QAM误码率');

figure
plot(yfit,'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
xlabel('训练迭代次数');
ylabel('神经网络训练曲线');

```

相关文章
|
2天前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
18 6
|
1天前
|
机器学习/深度学习 算法 语音技术
基于语音信号MFCC特征提取和GRNN神经网络的人员身份检测算法matlab仿真
**语音识别算法概览** MATLAB2022a中实现,结合MFCC与GRNN技术进行说话人身份检测。MFCC利用人耳感知特性提取语音频谱特征,GRNN作为非线性映射工具,擅长序列学习,确保高效识别。预加重、分帧、加窗、FFT、滤波器组、IDCT构成MFCC步骤,GRNN以其快速学习与鲁棒性处理不稳定数据。适用于多种领域。
|
2天前
|
算法
基于蝗虫优化的KNN分类特征选择算法的matlab仿真
摘要: - 功能:使用蝗虫优化算法增强KNN分类器的特征选择,提高分类准确性 - 软件版本:MATLAB2022a - 核心算法:通过GOA选择KNN的最优特征以改善性能 - 算法原理: - KNN基于最近邻原则进行分类 - 特征选择能去除冗余,提高效率 - GOA模仿蝗虫行为寻找最佳特征子集,以最大化KNN的验证集准确率 - 运行流程:初始化、评估、更新,直到达到停止标准,输出最佳特征组合
|
1月前
|
消息中间件 Java Linux
2024年最全BATJ真题突击:Java基础+JVM+分布式高并发+网络编程+Linux(1),2024年最新意外的惊喜
2024年最全BATJ真题突击:Java基础+JVM+分布式高并发+网络编程+Linux(1),2024年最新意外的惊喜
|
15天前
|
网络协议 算法 Linux
【嵌入式软件工程师面经】Linux网络编程Socket
【嵌入式软件工程师面经】Linux网络编程Socket
31 1
|
17天前
|
Linux 数据安全/隐私保护 Windows
linux 搭建cloudreve win映射网络驱动器WebDav
linux 搭建cloudreve win映射网络驱动器WebDav
|
18天前
|
监控 网络协议 Ubuntu
Linux网络配置全攻略:解读/etc/network/interfaces文件的精髓
Linux网络配置全攻略:解读/etc/network/interfaces文件的精髓
35 1
|
16天前
|
负载均衡 Ubuntu Linux
Linux命令探秘:bond2team与网络绑定技术
Linux的`bond2team`是网络绑定和团队技术工具,用于组合多个网络接口以提升带宽、容错性和负载均衡。通过安装`ifenslave-2.6`,在`/etc/sysconfig/network-scripts/`或`/etc/network/interfaces`配置文件中设定接口绑定模式,如`activebackup`。它支持负载均衡、容错和热备等多种工作模式,确保网络高可用性和性能。在配置前务必备份,并重启服务使配置生效。

热门文章

最新文章