使用python实现FP-Growth算法

简介: 使用python实现FP-Growth算法

FP-Growth(Frequent Pattern Growth)是一种用于发现频繁项集的数据挖掘算法,通常用于关联规则挖掘。下面是一个简单的Python实现FP-Growth算法的示例:

 

```python
from collections import defaultdict
 
class FPNode:
    def __init__(self, item, count, parent):
        self.item = item
        self.count = count
        self.parent = parent
        self.children = {}
        self.next = None
 
    def increment_count(self, count):
        self.count += count
 
def build_tree(transactions, min_support):
    header_table = defaultdict(int)
    for transaction in transactions:
        for item in transaction:
            header_table[item] += 1
    header_table = {k: v for k, v in header_table.items() if v >= min_support}
    
    if len(header_table) == 0:
        return None, None
 
    root = FPNode(None, 0, None)
    for transaction in transactions:
        transaction = [item for item in transaction if item in header_table]
        transaction.sort(key=lambda item: header_table[item], reverse=True)
        current_node = root
        for item in transaction:
            if item in current_node.children:
                current_node.children[item].increment_count(1)
            else:
                new_node = FPNode(item, 1, current_node)
                current_node.children[item] = new_node
                if header_table[item] == 1:
                    update_fp_tree(new_node, header_table)
            current_node = current_node.children[item]
 
    return root, header_table
 
def update_fp_tree(node, header_table):
    while node.next is not None:
        node = node.next
    node.next = header_table[node.item]
 
def find_frequent_patterns(tree, header_table, prefix, frequent_patterns, min_support):
    for item, count in header_table.items():
        new_prefix = prefix.copy()
        new_prefix.add(item)
        frequent_patterns.add(frozenset(new_prefix))
        conditional_patterns = get_conditional_patterns(item, header_table)
        conditional_tree, conditional_header = build_tree(conditional_patterns, min_support)
        if conditional_tree is not None:
            find_frequent_patterns(conditional_tree, conditional_header, new_prefix, frequent_patterns, min_support)
 
def get_conditional_patterns(item, header_table):
    conditional_patterns = []
    node = header_table[item]
    while node is not None:
        prefix_path = []
        current_node = node.parent
        while current_node.item is not None:
            prefix_path.append(current_node.item)
            current_node = current_node.parent
        if len(prefix_path) > 0:
            conditional_patterns.append(prefix_path)
        node = node.next
    return conditional_patterns
 
def fp_growth(transactions, min_support):
    tree, header_table = build_tree(transactions, min_support)
    frequent_patterns = set()
    find_frequent_patterns(tree, header_table, set(), frequent_patterns, min_support)
    return frequent_patterns
 
# 示例数据
transactions = [
    ['A', 'B', 'D'],
    ['B', 'C', 'E'],
    ['A', 'B', 'D', 'E'],
    ['A', 'B', 'C', 'E']
]
 
min_support = 2
 
frequent_patterns = fp_growth(transactions, min_support)
for pattern in frequent_patterns:
    print(pattern)
```

 

这是一个简单的FP-Growth算法的Python实现示例。您可以根据需要进行调整和扩展。这段代码可以帮助您理解FP-Growth算法的基本原理和实现方式。

目录
打赏
0
0
0
0
7
分享
相关文章
解锁文件共享软件背后基于 Python 的二叉搜索树算法密码
文件共享软件在数字化时代扮演着连接全球用户、促进知识与数据交流的重要角色。二叉搜索树作为一种高效的数据结构,通过有序存储和快速检索文件,极大提升了文件共享平台的性能。它依据文件名或时间戳等关键属性排序,支持高效插入、删除和查找操作,显著优化用户体验。本文还展示了用Python实现的简单二叉搜索树代码,帮助理解其工作原理,并展望了该算法在分布式计算和机器学习领域的未来应用前景。
员工电脑监控场景下 Python 红黑树算法的深度解析
在当代企业管理范式中,员工电脑监控业已成为一种广泛采用的策略性手段,其核心目标在于维护企业信息安全、提升工作效能并确保合规性。借助对员工电脑操作的实时监测机制,企业能够敏锐洞察潜在风险,诸如数据泄露、恶意软件侵袭等威胁。而员工电脑监控系统的高效运作,高度依赖于底层的数据结构与算法架构。本文旨在深入探究红黑树(Red - Black Tree)这一数据结构在员工电脑监控领域的应用,并通过 Python 代码实例详尽阐释其实现机制。
29 6
基于 Python 迪杰斯特拉算法的局域网计算机监控技术探究
信息技术高速演进的当下,局域网计算机监控对于保障企业网络安全、优化资源配置以及提升整体运行效能具有关键意义。通过实时监测网络状态、追踪计算机活动,企业得以及时察觉潜在风险并采取相应举措。在这一复杂的监控体系背后,数据结构与算法发挥着不可或缺的作用。本文将聚焦于迪杰斯特拉(Dijkstra)算法,深入探究其在局域网计算机监控中的应用,并借助 Python 代码示例予以详细阐释。
34 6
如何在Python下实现摄像头|屏幕|AI视觉算法数据的RTMP直播推送
本文详细讲解了在Python环境下使用大牛直播SDK实现RTMP推流的过程。从技术背景到代码实现,涵盖Python生态优势、AI视觉算法应用、RTMP稳定性及跨平台支持等内容。通过丰富功能如音频编码、视频编码、实时预览等,结合实际代码示例,为开发者提供完整指南。同时探讨C接口转换Python时的注意事项,包括数据类型映射、内存管理、回调函数等关键点。最终总结Python在RTMP推流与AI视觉算法结合中的重要性与前景,为行业应用带来便利与革新。
|
18天前
|
基于 Python 哈希表算法的员工上网管理策略研究
于当下数字化办公环境而言,员工上网管理已成为企业运营管理的关键环节。企业有必要对员工的网络访问行为予以监控,以此确保信息安全并提升工作效率。在处理员工上网管理相关数据时,适宜的数据结构与算法起着举足轻重的作用。本文将深入探究哈希表这一数据结构在员工上网管理场景中的应用,并借助 Python 代码示例展开详尽阐述。
37 3
Python下的毫秒级延迟RTSP|RTMP播放器技术探究和AI视觉算法对接
本文深入解析了基于Python实现的RTSP/RTMP播放器,探讨其代码结构、实现原理及优化策略。播放器通过大牛直播SDK提供的接口,支持低延迟播放,适用于实时监控、视频会议和智能分析等场景。文章详细介绍了播放控制、硬件解码、录像与截图功能,并分析了回调机制和UI设计。此外,还讨论了性能优化方法(如硬件加速、异步处理)和功能扩展(如音量调节、多格式支持)。针对AI视觉算法对接,文章提供了YUV/RGB数据处理示例,便于开发者在Python环境下进行算法集成。最终,播放器凭借低延迟、高兼容性和灵活扩展性,为实时交互场景提供了高效解决方案。
探秘文件共享服务之哈希表助力 Python 算法实现
在数字化时代,文件共享服务不可或缺。哈希表(散列表)通过键值对存储数据,利用哈希函数将键映射到特定位置,极大提升文件上传、下载和搜索效率。例如,在大型文件共享平台中,文件名等信息作为键,物理地址作为值存入哈希表,用户检索时快速定位文件,减少遍历时间。此外,哈希表还用于文件一致性校验,确保传输文件未被篡改。以Python代码示例展示基于哈希表的文件索引实现,模拟文件共享服务的文件索引构建与检索功能。哈希表及其分布式变体如一致性哈希算法,保障文件均匀分布和负载均衡,持续优化文件共享服务性能。
公司电脑网络监控场景下 Python 广度优先搜索算法的深度剖析
在数字化办公时代,公司电脑网络监控至关重要。广度优先搜索(BFS)算法在构建网络拓扑、检测安全威胁和优化资源分配方面发挥重要作用。通过Python代码示例展示其应用流程,助力企业提升网络安全与效率。未来,更多创新算法将融入该领域,保障企业数字化发展。
53 10
基于 Python 广度优先搜索算法的监控局域网电脑研究
随着局域网规模扩大,企业对高效监控计算机的需求增加。广度优先搜索(BFS)算法凭借其层次化遍历特性,在Python中可用于实现局域网内的计算机设备信息收集、网络连接状态监测及安全漏洞扫描,确保网络安全与稳定运行。通过合理选择数据结构与算法,BFS显著提升了监控效能,助力企业实现智能化的网络管理。
35 7
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
70 12

热门文章

最新文章