基于BP神经网络的16QAM解调算法matlab性能仿真

简介: 这是一个关于使用MATLAB2022a实现的16QAM解调算法的摘要。该算法基于BP神经网络,利用其非线性映射和学习能力从复数信号中估计16QAM符号,具有良好的抗噪性能。算法包括训练和测试两个阶段,通过反向传播调整网络参数以减小输出误差。核心程序涉及数据加载、可视化以及神经网络训练,评估指标为误码率(BER)和符号错误率(SER)。代码中还包含了星座图的绘制和训练曲线的展示。

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg

2.算法运行软件版本
MATLAB2022a

3.算法理论概述
16QAM(Quadrature Amplitude Modulation,正交幅度调制)是一种高效的数字调制技术,能够在相同的带宽内传输比传统调制方式更多的信息。解调是通信系统中从接收到的信号中恢复原始信息的关键步骤。基于BP(Back Propagation,反向传播)神经网络的16QAM解调算法,是利用人工神经网络强大的非线性映射和学习能力,直接从接收到的复数信号中估计出发送的16QAM符号,具有良好的抗噪性能和灵活性。

  BP神经网络是一种多层前馈网络,它包括输入层、隐藏层和输出层。在解调16QAM信号的应用中,输入层接收接收到的复数信号样本,输出层则输出对应的最可能的16QAM符号估计。训练过程中,通过调整网络权重和偏置,使得网络输出尽可能接近实际的符号标签,以此达到解调的目的。

image.png

  训练阶段:利用大量已知的16QAM符号及其对应的接收信号样本,通过反向传播算法不断调整网络参数,直至网络输出误差收敛到一个可接受的范围。

  测试阶段:在训练完成后,将未参与训练的测试集信号输入网络,评估网络的解调性能,包括误码率(BER)、符号错误率(SER)等指标。

4.部分核心程序

```% 第一部分:加载并可视化数据

real1 = [-3 -3 -3 -3 -1 -1 -1 -1 +3 +3 +3 +3 +1 +1 +1 +1]./sqrt(10);
imag1 = [-3 -1 +3 +1 -3 -1 +3 +1 -3 -1 +3 +1 -3 -1 +3 +1]./sqrt(10);

IQmap = real1'+sqrt(-1)*imag1';

for ij = 1:length(SNR)
ij
for j = 1:20
signal= round(rand(1,60000));
Stx = Modulator(signal,K);
Srx = awgn(Stx,SNR(ij),'measured');
..................................................................

    %为每个神经网络寻找最佳超参数组合
    [accuracy,yfit] = func_ANN_qpsk(Si, Sh, Nlabel, lambda, IQmap, SrxT, StxT, SrxV, StxV);
    err(ij,j)=1-accuracy/100;
end

end

% 调用函数绘制星座图,展示数据的10%
func_constellation(Srx,Stx,0.5)

figure;
semilogy(SNR,mean(err,2),'b-o');
grid on
xlabel('SNR');
ylabel('误码率');
legend('16QAM误码率');

figure
plot(yfit,'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
xlabel('训练迭代次数');
ylabel('神经网络训练曲线');

```

相关文章
|
5天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
6天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
7天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
6天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
6天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
23 3
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
3月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
53 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
|
3月前
|
机器学习/深度学习 Linux TensorFlow
【Tensorflow+keras】用代码给神经网络结构绘图
文章提供了使用TensorFlow和Keras来绘制神经网络结构图的方法,并给出了具体的代码示例。
54 0

热门文章

最新文章