Pytorch 搭建分类回归神经网络并用GPU进行加速

简介: Pytorch 搭建分类回归神经网络并用GPU进行加速

分类网络

import torch

import torch.nn.functional as F

from torch.autograd import Variable

import matplotlib.pyplot as plt


# 构造数据
n_data = torch.ones(100, 2)
x0 = torch.normal(3*n_data, 1)
x1 = torch.normal(-3*n_data, 1)
# 标记为y0=0,y1=1两类标签
y0 = torch.zeros(100)
y1 = torch.ones(100)
# 通过.cat连接数据
x = torch.cat((x0, x1), 0).type(torch.FloatTensor)
y = torch.cat((y0, y1), 0).type(torch.LongTensor)
# .cuda()会将Variable数据迁入GPU中
x, y = Variable(x).cuda(), Variable(y).cuda()
# plt.scatter(x.data.cpu().numpy()[:, 0], x.data.cpu().numpy()[:, 1], c=y.data.cpu().numpy(), s=100, lw=0, cmap='RdYlBu')
# plt.show()
# 网络构造方法一
class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        # 隐藏层的输入和输出
        self.hidden1 = torch.nn.Linear(n_feature, n_hidden)
        self.hidden2 = torch.nn.Linear(n_hidden, n_hidden)
        # 输出层的输入和输出
        self.out = torch.nn.Linear(n_hidden, n_output)
    def forward(self, x):
        x = F.relu(self.hidden2(self.hidden1(x)))
        x = self.out(x)
        return x
# 初始化一个网络,1个输入层,10个隐藏层,1个输出层
net = Net(2, 10, 2)
# 网络构造方法二
'''
net = torch.nn.Sequential(
    torch.nn.Linear(2, 10),
    torch.nn.Linear(10, 10),
    torch.nn.ReLU(),
    torch.nn.Linear(10, 2),
)
'''
# .cuda()将网络迁入GPU中
net.cuda()
# 配置网络优化器
optimizer = torch.optim.SGD(net.parameters(), lr=0.2)
# SGD: torch.optim.SGD(net.parameters(), lr=0.01)
# Momentum: torch.optim.SGD(net.parameters(), lr=0.01, momentum=0.8)
# RMSprop: torch.optim.RMSprop(net.parameters(), lr=0.01, alpha=0.9)
# Adam: torch.optim.Adam(net.parameters(), lr=0.01, betas=(0.9, 0.99))
loss_func = torch.nn.CrossEntropyLoss()
# 动态可视化
plt.ion()
plt.show()
for t in range(300):
    print(t)
    out = net(x)
    loss = loss_func(out, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    if t % 5 == 0:
        plt.cla()
        prediction = torch.max(F.softmax(out, dim=0), 1)[1].cuda()
        # GPU中的数据无法被matplotlib利用,需要用.cpu()将数据从GPU中迁出到CPU中
        pred_y = prediction.data.cpu().numpy().squeeze()
        target_y = y.data.cpu().numpy()
        plt.scatter(x.data.cpu().numpy()[:, 0], x.data.cpu().numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlBu')
        accuracy = sum(pred_y == target_y) / 200
        plt.text(1.5, -4, 'accuracy=%.2f' % accuracy, fontdict={'size':20, 'color':'red'})
        plt.pause(0.1)
plt.ioff()
plt.show()


0a2653c851af460fa595bd959398a8f1.png


回归网络


import torch
import torch.nn.functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt
# 构造数据
x = torch.unsqueeze(torch.linspace(-1,1,100), dim=1)
y = x.pow(2) + 0.2*torch.rand(x.size())
# .cuda()会将Variable数据迁入GPU中
x, y = Variable(x).cuda(), Variable(y).cuda()
# plt.scatter(x.data.numpy(), y.data.numpy())
# plt.show()
# 网络构造方法一
class Net(torch.nn.Module):
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()
        # 隐藏层的输入和输出
        self.hidden = torch.nn.Linear(n_feature, n_hidden)
        # 输出层的输入和输出
        self.predict = torch.nn.Linear(n_hidden, n_output)
    def forward(self, x):
        x = F.relu(self.hidden(x))
        x = self.predict(x)
        return x
# 初始化一个网络,1个输入层,10个隐藏层,1个输出层
net = Net(1, 10, 1)
# 网络构造方法二
'''
net = torch.nn.Sequential(
    torch.nn.Linear(1, 10),
    torch.nn.ReLU(),
    torch.nn.Linear(10, 1),
)
'''
# .cuda()将网络迁入GPU中
net.cuda()
# 配置网络优化器
optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
# SGD: torch.optim.SGD(net.parameters(), lr=0.01)
# Momentum: torch.optim.SGD(net.parameters(), lr=0.01, momentum=0.8)
# RMSprop: torch.optim.RMSprop(net.parameters(), lr=0.01, alpha=0.9)
# Adam: torch.optim.Adam(net.parameters(), lr=0.01, betas=(0.9, 0.99))
loss_func = torch.nn.MSELoss()
# 动态可视化
plt.ion()
plt.show()
for t in range(300):
    prediction = net(x)
    loss = loss_func(prediction, y)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    if t % 5 == 0 :
        plt.cla()
        # GPU中的数据无法被matplotlib利用,需要用.cpu()将数据从GPU中迁出到CPU中
        plt.scatter(x.data.cpu().numpy(), y.data.cpu().numpy())
        plt.plot(x.data.cpu().numpy(), prediction.data.cpu().numpy(), 'r-', lw=5)
        plt.text(0.5, 0, 'Loss=%.4f' % loss.item(), fontdict={'size':20, 'color':'red'})
        plt.pause(0.1)
plt.ioff()
plt.show()


2d65d23f6d4748949b924e4057485923.png


相关实践学习
基于阿里云DeepGPU实例,用AI画唯美国风少女
本实验基于阿里云DeepGPU实例,使用aiacctorch加速stable-diffusion-webui,用AI画唯美国风少女,可提升性能至高至原性能的2.6倍。
相关文章
|
15天前
|
机器学习/深度学习 自然语言处理 算法
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
|
3天前
|
算法 定位技术 网络架构
网络的分类与性能指标
可以分为广域网(WAN)、城域网(MAN)、局域网(LAN)、个人区域网(PAN)。
25 4
|
3天前
|
机器学习/深度学习 自然语言处理 搜索推荐
深度学习之分类网络
深度学习的分类网络(Classification Networks)是用于将输入数据分配到预定义类别的神经网络。它们广泛应用于图像分类、文本分类、语音识别等任务。以下是对深度学习分类网络的详细介绍,包括其基本概念、主要架构、常见模型、应用场景、优缺点及未来发展方向。
34 4
|
15天前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】36. 门控循环神经网络之长短期记忆网络(LSTM)介绍、Pytorch实现LSTM并进行训练预测
【从零开始学习深度学习】36. 门控循环神经网络之长短期记忆网络(LSTM)介绍、Pytorch实现LSTM并进行训练预测
|
1天前
|
并行计算 PyTorch 程序员
老程序员分享:Pytorch入门之Siamese网络
老程序员分享:Pytorch入门之Siamese网络
|
15天前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用
【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用
|
15天前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】45. Pytorch迁移学习微调方法实战:使用微调技术进行2分类图片热狗识别模型训练【含源码与数据集】
【从零开始学习深度学习】45. Pytorch迁移学习微调方法实战:使用微调技术进行2分类图片热狗识别模型训练【含源码与数据集】
|
1月前
|
机器学习/深度学习 编解码 PyTorch
Pytorch实现手写数字识别 | MNIST数据集(CNN卷积神经网络)
Pytorch实现手写数字识别 | MNIST数据集(CNN卷积神经网络)
|
15天前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】30. 神经网络中批量归一化层(batch normalization)的作用及其Pytorch实现
【从零开始学习深度学习】30. 神经网络中批量归一化层(batch normalization)的作用及其Pytorch实现
|
15天前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】16. Pytorch中神经网络模型的构造方法:Module、Sequential、ModuleList、ModuleDict的区别
【从零开始学习深度学习】16. Pytorch中神经网络模型的构造方法:Module、Sequential、ModuleList、ModuleDict的区别

热门文章

最新文章