LabVIEW开发基于神经网络的自动汽车制动系统

简介: LabVIEW开发基于神经网络的自动汽车制动系统

完美的停车是世界上司机,尤其是新司机面临的主要问题之一。随着汽车数量的增加,停车位也越来越小。这些较小的空间增加了汽车在停车操作中撞到其他汽车的风险。目前使用蜂鸣器指示距离的趋势并不像大多数驾驶员希望的那样敏感,而且它们经常被忽略。因此,需要一种替代方案来防止这些小碰撞。


   最近已经开发出防止汽车碰撞的技术,但它仅适用于高速状态下的汽车。该项目将采用这一概念并将其应用于更常见的应用,即停车。当汽车进入倒车模式时,后保险杠上的超声波传感器启动的过程被激活。它将检测后面的障碍物并激活汽车制动器改变压力,直到汽车最终停止。


最近公司提出了“主动停车辅助”,它可以自动停车,驾驶员甚至不需要触摸方向盘。该系统的一些缺点是系统可能会拒绝将车停在狭窄的空间上。有些人还抱怨说,在将方向盘留给汽车的同时,不得不控制油门和刹车,这令人不安。项目更侧重于作为附加组件的系统。附加组件将更便宜,相对容易由汽车改装店安装。


ANN架构与学习算法


dcd67771f71f857a488ad977f1cdbabf.png


根据该算法,已经计算了几个权重,但计算最多只能达到小数点后五位。训练将用于进一步降低输出的误差幅度。


为了获得所需的输出,系统需要学习根据给定输入生成输出所需的调整。调整是使用反向传播方法完成的,并且不断调整权重,以便在误差时产生最小的量。


d08d8237166bf404894b423d41a4373d.png


经测试左右传感器检测到障碍物但后部传感器未检测到障碍物时的模拟输出。系统的输出为0.5071,与预期值0.5相差不远。


两个相邻传感器检测到障碍物时的模拟输出。两者可以是左和中心以及右和中心。这两种情况都会产生相同的输出结果。产生的输出为0.748,而所需的输出为0.750。


当所有三个传感器检测到障碍物时的模拟输出。本例所需的输出为1,仿真显示网络能够产生0.98的输出。


虽然上述情况可能不符合正常的实际用法,但它确实产生了可以看到和理解的结果。通过训练系统以满足预期的目的,可以产生不同的、更好的结果。

相关文章
|
1天前
|
机器学习/深度学习 人工智能 算法
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
海洋生物识别系统。以Python作为主要编程语言,通过TensorFlow搭建ResNet50卷积神经网络算法,通过对22种常见的海洋生物('蛤蜊', '珊瑚', '螃蟹', '海豚', '鳗鱼', '水母', '龙虾', '海蛞蝓', '章鱼', '水獭', '企鹅', '河豚', '魔鬼鱼', '海胆', '海马', '海豹', '鲨鱼', '虾', '鱿鱼', '海星', '海龟', '鲸鱼')数据集进行训练,得到一个识别精度较高的模型文件,然后使用Django开发一个Web网页平台操作界面,实现用户上传一张海洋生物图片识别其名称。
28 7
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
|
2天前
|
机器学习/深度学习 人工智能 算法
【昆虫识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50
昆虫识别系统,使用Python作为主要开发语言。通过TensorFlow搭建ResNet50卷积神经网络算法(CNN)模型。通过对10种常见的昆虫图片数据集('蜜蜂', '甲虫', '蝴蝶', '蝉', '蜻蜓', '蚱蜢', '蛾', '蝎子', '蜗牛', '蜘蛛')进行训练,得到一个识别精度较高的H5格式模型文件,然后使用Django搭建Web网页端可视化操作界面,实现用户上传一张昆虫图片识别其名称。
33 7
【昆虫识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50
|
2天前
|
机器学习/深度学习 人工智能 算法
【球类识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+TensorFlow
球类识别系统,本系统使用Python作为主要编程语言,基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集 '美式足球', '棒球', '篮球', '台球', '保龄球', '板球', '足球', '高尔夫球', '曲棍球', '冰球', '橄榄球', '羽毛球', '乒乓球', '网球', '排球'等15种常见的球类图像作为数据集,然后进行训练,最终得到一个识别精度较高的模型文件。再使用Django开发Web网页端可视化界面平台,实现用户上传一张球类图片识别其名称。
21 7
【球类识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+TensorFlow
|
4天前
|
存储 数据管理 数据处理
网络的备份系统
【6月更文挑战第21天】网络的备份系统
32 2
|
13天前
|
JavaScript Java 测试技术
基于springboot+vue.js+uniapp小程序的大学生计算机基础网络教学系统附带文章源码部署视频讲解等
基于springboot+vue.js+uniapp小程序的大学生计算机基础网络教学系统附带文章源码部署视频讲解等
9 0
|
17天前
|
缓存 安全 前端开发
(转)浅谈tomcat优化(内存,并发,缓存,安全,网络,系统等)
(转)浅谈tomcat优化(内存,并发,缓存,安全,网络,系统等)
|
1月前
|
消息中间件 Java Linux
2024年最全BATJ真题突击:Java基础+JVM+分布式高并发+网络编程+Linux(1),2024年最新意外的惊喜
2024年最全BATJ真题突击:Java基础+JVM+分布式高并发+网络编程+Linux(1),2024年最新意外的惊喜
|
17天前
|
网络协议 算法 Linux
【嵌入式软件工程师面经】Linux网络编程Socket
【嵌入式软件工程师面经】Linux网络编程Socket
35 1
|
2天前
|
安全 物联网 Linux
学习Linux对网络安全的重要性
**学习Linux对网络安全至关重要:** 1. 开源操作系统广泛应用于服务器、网络设备,掌握Linux是安全专家必备技能。 2. Linux内置安全特性,如最小权限和防火墙,加上丰富的安全工具,提供强大保障。 3. 可定制性允许灵活配置,满足安全需求,开源社区提供持续更新和教育资源。 4. 学习Linux能提升攻防能力,用于系统加固和渗透测试,适应跨平台安全场景。 5. 随着云计算和物联网发展,Linux在网络安全中的角色日益关键。
12 3
|
20天前
|
Linux 数据安全/隐私保护 Windows
linux 搭建cloudreve win映射网络驱动器WebDav
linux 搭建cloudreve win映射网络驱动器WebDav