深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 【8月更文第29天】深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch 是一个强大的深度学习框架,它提供了灵活的 API 和动态计算图,非常适合初学者和研究者使用。

深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络

引言

深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch 是一个强大的深度学习框架,它提供了灵活的 API 和动态计算图,非常适合初学者和研究者使用。

安装 PyTorch

确保安装了 Python 和 pip。然后通过以下命令安装 PyTorch:

pip install torch torchvision

导入库

我们需要导入一些必要的库:

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader

准备数据

首先,我们需要下载并加载 MNIST 数据集:

# 设置数据转换
transform = transforms.Compose([
    transforms.ToTensor(),  # 转换成 Tensor
    transforms.Normalize((0.5,), (0.5,))  # 归一化
])

# 下载训练数据集
train_data = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_data, batch_size=64, shuffle=True)

# 下载测试数据集
test_data = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
test_loader = DataLoader(test_data, batch_size=64, shuffle=True)

定义模型

接下来定义我们的神经网络模型。这里我们使用一个简单的全连接网络:

class SimpleNet(nn.Module):
    def __init__(self):
        super(SimpleNet, self).__init__()
        self.fc1 = nn.Linear(28 * 28, 128)  # 输入层到隐藏层
        self.fc2 = nn.Linear(128, 64)       # 隐藏层到隐藏层
        self.fc3 = nn.Linear(64, 10)        # 最后一层到输出层

    def forward(self, x):
        x = x.view(-1, 28 * 28)             # 展平输入
        x = torch.relu(self.fc1(x))
        x = torch.relu(self.fc2(x))
        x = self.fc3(x)
        return x

model = SimpleNet()

定义损失函数和优化器

选择适当的损失函数和优化器:

criterion = nn.CrossEntropyLoss()  # 多分类任务常用的损失函数
optimizer = optim.SGD(model.parameters(), lr=0.01)  # 使用随机梯度下降优化器

训练模型

现在我们可以开始训练模型:

num_epochs = 10

for epoch in range(num_epochs):
    running_loss = 0.0
    for i, (inputs, labels) in enumerate(train_loader, 0):
        # 前向传播 + 反向传播 + 优化
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()

    print(f"Epoch {epoch+1}, Loss: {running_loss/len(train_loader)}")

测试模型

最后,我们需要评估模型在测试集上的性能:

correct = 0
total = 0
with torch.no_grad():
    for data in test_loader:
        images, labels = data
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print(f'Accuracy of the network on the 10000 test images: {100 * correct / total} %')

以上就是使用 PyTorch 构建和训练简单神经网络的完整过程。这个例子展示了如何从零开始建立一个基本的深度学习模型,并通过实际数据集对其进行训练和测试。随着你对 PyTorch 的了解加深,你可以尝试更复杂的模型结构和更高级的技术。

目录
相关文章
|
2天前
|
存储 监控 安全
单位网络监控软件:Java 技术驱动的高效网络监管体系构建
在数字化办公时代,构建基于Java技术的单位网络监控软件至关重要。该软件能精准监管单位网络活动,保障信息安全,提升工作效率。通过网络流量监测、访问控制及连接状态监控等模块,实现高效网络监管,确保网络稳定、安全、高效运行。
27 11
|
16天前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
42 3
图卷积网络入门:数学基础与架构设计
|
8天前
|
云安全 人工智能 安全
|
6天前
|
Web App开发 网络协议 安全
网络编程懒人入门(十六):手把手教你使用网络编程抓包神器Wireshark
Wireshark是一款开源和跨平台的抓包工具。它通过调用操作系统底层的API,直接捕获网卡上的数据包,因此捕获的数据包详细、功能强大。但Wireshark本身稍显复杂,本文将以用抓包实例,手把手带你一步步用好Wireshark,并真正理解抓到的数据包的各项含义。
39 2
|
13天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
39 3
|
20天前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
|
9天前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
48 5
|
1天前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
30 19
|
1天前
|
机器学习/深度学习 传感器 人工智能
探索深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过介绍卷积神经网络(CNN)的基本原理和架构设计,阐述了深度学习如何有效地从图像数据中提取特征,并在多个领域实现突破性进展。同时,文章也指出了训练深度模型时常见的过拟合问题、数据不平衡以及计算资源需求高等挑战,并提出了相应的解决策略。
28 7
|
12天前
|
机器学习/深度学习 自动驾驶 算法
深度学习在图像识别中的应用
本文将探讨深度学习技术在图像识别领域的应用。我们将介绍深度学习的基本原理,以及如何利用这些原理进行图像识别。我们将通过一个简单的代码示例来演示如何使用深度学习模型进行图像分类。最后,我们将讨论深度学习在图像识别领域的未来发展趋势和挑战。