【Python实战】——神经网络识别手写数字(二)

简介: 【Python实战】——神经网络识别手写数字(三)

【Python实战】——神经网络识别手写数字(一)+https://developer.aliyun.com/article/1506500

2.3 神经网络模型定义

  运行程序:

ANN = NeuralNetwork(num_of_in_nodes = image_pixels, #输入
                    num_of_out_nodes = 10, #输出节点数
                    num_of_hidden_nodes = 100,#隐藏节点
                    learning_rate = 0.1)#学习率

2.4 模型训练

2.4.1 预测概率

  运行程序:

for i in range(len(train_imgs)):
    ANN.train(train_imgs[i], train_labels_one_hot[i])
for i in range(20):
    res = ANN.run(test_imgs[i])
    print(test_labels[i], np.argmax(res), np.max(res))

  运行结果:

[7.] 7 0.9992648448921
[2.] 2 0.9040034245332168
[1.] 1 0.9992201001324703
[0.] 0 0.9923701545281887
[4.] 4 0.989297708155559
[1.] 1 0.9984582148795715
[4.] 4 0.9957673752296046
[9.] 9 0.9889417895800644
[5.] 6 0.5009071817613537
[9.] 9 0.9879513019542627
[0.] 0 0.9932950902790246
[6.] 6 0.9387061553685657
[9.] 9 0.9962530965286298
[0.] 0 0.9974524110371016
[1.] 1 0.9991354417269441
[5.] 5 0.7607733657668813
[9.] 9 0.9968080255475414
[7.] 7 0.9967748204232602
[3.] 3 0.8820920415159276
[4.] 4 0.9978584850755227

2.4.2 训练集正确率

  运行程序:

corrects, wrongs = ANN.evaluate(train_imgs, train_labels)#训练集判别正确和错误数量
print("accuracy train: ", corrects / ( corrects + wrongs))##正确率

  运行结果:

accuracy train:  0.9425333333333333

2.4.3 测试集正确率

  运行程序:

corrects, wrongs = ANN.evaluate(test_imgs, test_labels)
print("accuracy: test", corrects / ( corrects + wrongs))#测试集正确率

  运行结果:

accuracy: test 0.9412

2.4.4 训练集判别矩阵

  运行程序:

cm = ANN.confusion_matrix(train_imgs, train_labels)
print(cm)   #训练集判别矩阵

  运行结果:

[[5822    1   54   35   15   41   47   12   31   31]
 [   2 6638   62   31   17   24   21   64  163   14]
 [   6   19 5487   57   16    9    2   45   16    4]
 [   7   27   87 5773    3  130    3   16  148   67]
 [  11   11   68    8 5332   34   12   48   28   44]
 [  10    4    6   69    0 4952   34    5   32    5]
 [  31    5   53   19   49   96 5782    5   37    2]
 [   1    9   45   35    6    6    0 5812    5   28]
 [  20    9   70   32    9   37   15   11 5209    9]
 [  13   19   26   72  395   92    2  247  182 5745]]

2.4.5 不同数字预测精确率

  运行程序:

for i in range(10):
    print("digit: ", i, "precision: ", ANN.precision(i, cm))

  运行结果:

digit:  0 precision:  0.9829478304913051
digit:  1 precision:  0.9845743102936814
digit:  2 precision:  0.9209466263846928
digit:  3 precision:  0.9416082205186755
digit:  4 precision:  0.9127011297500855
digit:  5 precision:  0.9134845969378343
digit:  6 precision:  0.9770192632646164
digit:  7 precision:  0.9276935355147645
digit:  8 precision:  0.8902751666381815
digit:  9 precision:  0.9657085224407463

2.5 结果可视化

2.5.1 每次epoch训练预测情况

  运行程序:

epochs = 30
train_acc=[]
test_acc=[]
NN = NeuralNetwork(num_of_in_nodes = image_pixels, 
                   num_of_out_nodes = 10, 
                   num_of_hidden_nodes = 100,
                   learning_rate = 0.1)
for epoch in range(epochs):  
    print("epoch: ", epoch)
    for i in range(len(train_imgs)):
        NN.train(train_imgs[i], 
                 train_labels_one_hot[i])
  
    corrects, wrongs = NN.evaluate(train_imgs, train_labels)
    print("accuracy train: ", corrects / ( corrects + wrongs))
    train_acc.append(corrects / ( corrects + wrongs))
    corrects, wrongs = NN.evaluate(test_imgs, test_labels)
    print("accuracy: test", corrects / ( corrects + wrongs))
    test_acc.append(corrects / ( corrects + wrongs))

运行结果:

epoch:  0
accuracy train:  0.94455
accuracy: test 0.9422
epoch:  1
accuracy train:  0.9628
accuracy: test 0.9579
epoch:  2
accuracy train:  0.9699
accuracy: test 0.9637
epoch:  3
accuracy train:  0.9761166666666666
accuracy: test 0.9649
epoch:  4
accuracy train:  0.979
accuracy: test 0.9662
epoch:  5
accuracy train:  0.9820833333333333
accuracy: test 0.9679
epoch:  6
accuracy train:  0.9838166666666667
accuracy: test 0.9697
epoch:  7
accuracy train:  0.9845666666666667
accuracy: test 0.97
epoch:  8
accuracy train:  0.9855333333333334
accuracy: test 0.9703
epoch:  9
accuracy train:  0.9868166666666667
accuracy: test 0.97
epoch:  10
accuracy train:  0.9878166666666667
accuracy: test 0.9714
epoch:  11
accuracy train:  0.98845
accuracy: test 0.9716
epoch:  12
accuracy train:  0.98905
accuracy: test 0.9721
epoch:  13
accuracy train:  0.9898166666666667
accuracy: test 0.9723
epoch:  14
accuracy train:  0.9903
accuracy: test 0.9722
epoch:  15
accuracy train:  0.9907666666666667
accuracy: test 0.9719
epoch:  16
accuracy train:  0.9910833333333333
accuracy: test 0.9715
epoch:  17
accuracy train:  0.9918
accuracy: test 0.9714
epoch:  18
accuracy train:  0.9924166666666666
accuracy: test 0.971
epoch:  19
accuracy train:  0.99265
accuracy: test 0.9712
epoch:  20
accuracy train:  0.9932833333333333
accuracy: test 0.972
epoch:  21
accuracy train:  0.9939333333333333
accuracy: test 0.9716
epoch:  22
accuracy train:  0.9944333333333333
accuracy: test 0.972
epoch:  23
accuracy train:  0.9948
accuracy: test 0.9719
epoch:  24
accuracy train:  0.9950833333333333
accuracy: test 0.9718
epoch:  25
accuracy train:  0.9950833333333333
accuracy: test 0.9722
epoch:  26
accuracy train:  0.99525
accuracy: test 0.9725
epoch:  27
accuracy train:  0.9955833333333334
accuracy: test 0.972
epoch:  28
accuracy train:  0.9958166666666667
accuracy: test 0.9717
epoch:  29
accuracy train:  0.9962666666666666
accuracy: test 0.9717

2.5.2 迭代30次正确率绘图

  运行程序:

#正确率绘图
# matplotlib其实是不支持显示中文的 显示中文需要一行代码设置字体  
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rcParams['font.family'] = 'SimHei'  
plt.rcParams['axes.unicode_minus'] = False   
import matplotlib.pyplot as plt 
x=np.arange(1,31,1)
plt.title('迭代30次正确率')
plt.plot(x, train_acc, color='green', label='训练集')
plt.plot(x, test_acc, color='red', label='测试集')
plt.legend() # 显示图例
plt.show()

  运行结果:

【Python实战】——神经网络识别手写数字(三)+https://developer.aliyun.com/article/1506502

相关文章
|
8天前
|
Python
Python中的异步编程:使用asyncio和aiohttp实现高效网络请求
【10月更文挑战第34天】在Python的世界里,异步编程是提高效率的利器。本文将带你了解如何使用asyncio和aiohttp库来编写高效的网络请求代码。我们将通过一个简单的示例来展示如何利用这些工具来并发地处理多个网络请求,从而提高程序的整体性能。准备好让你的Python代码飞起来吧!
24 2
|
15天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
59 6
|
15天前
|
设计模式 前端开发 数据库
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第27天】本文介绍了Django框架在Python Web开发中的应用,涵盖了Django与Flask等框架的比较、项目结构、模型、视图、模板和URL配置等内容,并展示了实际代码示例,帮助读者快速掌握Django全栈开发的核心技术。
101 44
|
6天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从基础到实战
【10月更文挑战第36天】本文将带你走进Python的世界,从基础语法出发,逐步深入到实际项目应用。我们将一起探索Python的简洁与强大,通过实例学习如何运用Python解决问题。无论你是编程新手还是希望扩展技能的老手,这篇文章都将为你提供有价值的指导和灵感。让我们一起开启Python编程之旅,用代码书写想法,创造可能。
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
21 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
8天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
26 4
|
8天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
27 3
|
7天前
|
机器学习/深度学习 数据可视化 数据处理
Python数据科学:从基础到实战
Python数据科学:从基础到实战
13 1
|
8天前
|
机器学习/深度学习 JSON API
Python编程实战:构建一个简单的天气预报应用
Python编程实战:构建一个简单的天气预报应用
19 1
|
11天前
|
前端开发 API 开发者
Python Web开发者必看!AJAX、Fetch API实战技巧,让前后端交互如丝般顺滑!
在Web开发中,前后端的高效交互是提升用户体验的关键。本文通过一个基于Flask框架的博客系统实战案例,详细介绍了如何使用AJAX和Fetch API实现不刷新页面查看评论的功能。从后端路由设置到前端请求处理,全面展示了这两种技术的应用技巧,帮助Python Web开发者提升项目质量和开发效率。
26 1