【Python实战】——神经网络识别手写数字(三)

简介: 【Python实战】——神经网络识别手写数字

【Python实战】——神经网络识别手写数字(二)+https://developer.aliyun.com/article/1506501

3 模型优化

3.1 调整神经元数量

3.1.1 每次epoch训练预测情况

  运行程序:

##更换隐藏神经元数量为50
epochs = 50
train_acc=[]
test_acc=[]
NN = NeuralNetwork(num_of_in_nodes = image_pixels, 
                   num_of_out_nodes = 10, 
                   num_of_hidden_nodes = 50,
                   learning_rate = 0.1)
for epoch in range(epochs):  
    print("epoch: ", epoch)
    for i in range(len(train_imgs)):
        NN.train(train_imgs[i], 
                 train_labels_one_hot[i])
  
    corrects, wrongs = NN.evaluate(train_imgs, train_labels)
    print("accuracy train: ", corrects / ( corrects + wrongs))
    train_acc.append(corrects / ( corrects + wrongs))
    corrects, wrongs = NN.evaluate(test_imgs, test_labels)
    print("accuracy: test", corrects / ( corrects + wrongs))
    test_acc.append(corrects / ( corrects + wrongs))

  运行结果:

epoch:  0
accuracy train:  0.93605
accuracy: test 0.935
epoch:  1
accuracy train:  0.95185
accuracy: test 0.9501
epoch:  2
accuracy train:  0.9570333333333333
accuracy: test 0.9526
epoch:  3
accuracy train:  0.9630833333333333
accuracy: test 0.9556
epoch:  4
accuracy train:  0.9640166666666666
accuracy: test 0.9556
epoch:  5
accuracy train:  0.9668333333333333
accuracy: test 0.957
epoch:  6
accuracy train:  0.96765
accuracy: test 0.957
epoch:  7
accuracy train:  0.9673166666666667
accuracy: test 0.9566
epoch:  8
accuracy train:  0.96875
accuracy: test 0.9559
epoch:  9
accuracy train:  0.97145
accuracy: test 0.957
epoch:  10
accuracy train:  0.974
accuracy: test 0.9579
epoch:  11
accuracy train:  0.9730666666666666
accuracy: test 0.9569
epoch:  12
accuracy train:  0.9730166666666666
accuracy: test 0.9581
epoch:  13
accuracy train:  0.9747666666666667
accuracy: test 0.959
epoch:  14
accuracy train:  0.9742166666666666
accuracy: test 0.9581
epoch:  15
accuracy train:  0.97615
accuracy: test 0.9596
epoch:  16
accuracy train:  0.9759
accuracy: test 0.9586
epoch:  17
accuracy train:  0.9773166666666666
accuracy: test 0.9596
epoch:  18
accuracy train:  0.9778833333333333
accuracy: test 0.9606
epoch:  19
accuracy train:  0.9789166666666667
accuracy: test 0.9589
epoch:  20
accuracy train:  0.9777333333333333
accuracy: test 0.9582
epoch:  21
accuracy train:  0.9774
accuracy: test 0.9573
epoch:  22
accuracy train:  0.9796166666666667
accuracy: test 0.9595
epoch:  23
accuracy train:  0.9792666666666666
accuracy: test 0.959
epoch:  24
accuracy train:  0.9804333333333334
accuracy: test 0.9591
epoch:  25
accuracy train:  0.9806
accuracy: test 0.9589
epoch:  26
accuracy train:  0.98105
accuracy: test 0.9596
epoch:  27
accuracy train:  0.9806833333333334
accuracy: test 0.9587
epoch:  28
accuracy train:  0.9809833333333333
accuracy: test 0.9595
epoch:  29
accuracy train:  0.9813333333333333
accuracy: test 0.9595

3.1.2 正确率绘图

  运行程序:

#正确率绘图
# matplotlib其实是不支持显示中文的 显示中文需要一行代码设置字体  
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rcParams['font.family'] = 'SimHei'  
plt.rcParams['axes.unicode_minus'] = False   # 步骤二(解决坐标轴负数的负号显示问题)  
import matplotlib.pyplot as plt 
x=np.arange(1,31,1)
plt.title('神经元数量为50时正确率')
plt.plot(x, train_acc, color='green', label='训练集')
plt.plot(x, test_acc, color='red', label='测试集')
plt.legend() # 显示图例
plt.show()

  运行结果:

3.2 更换隐藏层层数

3.2.1 每次epoch训练预测情况

  运行程序:

#隐藏层层数为2
class NeuralNetwork:
    
    def __init__(self, 
                 num_of_in_nodes, #输入节点数
                 num_of_out_nodes, #输出节点数
                 num_of_hidden_nodes1,#隐藏第一层节点数
                 num_of_hidden_nodes2,#隐藏第二层节点数
                 learning_rate):#学习率
        self.num_of_in_nodes = num_of_in_nodes
        self.num_of_out_nodes = num_of_out_nodes
        self.num_of_hidden_nodes1 = num_of_hidden_nodes1
        self.num_of_hidden_nodes2 = num_of_hidden_nodes2
        self.learning_rate = learning_rate 
        self.create_weight_matrices()
    #初始为一个隐藏节点    
    def create_weight_matrices(self):#创建权重矩阵
       
        #A method to initialize the weight 
        #matrices of the neural network#一种初始化神经网络权重矩阵的方法
        
        rad = 1 / np.sqrt(self.num_of_in_nodes)  
        X = truncated_normal(mean=0, sd=1, low=-rad, upp=rad)  #形成指定分布
        self.weight_1 = X.rvs((self.num_of_hidden_nodes1, self.num_of_in_nodes)) #rvs:产生服从指定分布的随机数
        
        rad = 1 / np.sqrt(self.num_of_hidden_nodes1)
        X = truncated_normal(mean=0, sd=1, low=-rad, upp=rad)
        self.weight_2 = X.rvs((self.num_of_hidden_nodes2, self.num_of_hidden_nodes1)) #rvs: 产生服从指定分布的随机数
        
        rad = 1 / np.sqrt(self.num_of_hidden_nodes2)
        X = truncated_normal(mean=0, sd=1, low=-rad, upp=rad)
        self.weight_3 = X.rvs((self.num_of_out_nodes, self.num_of_hidden_nodes2)) #rvs: 产生服从指定分布的随机数
    def train(self, input_vector, target_vector):
        
        #input_vector and target_vector can 
        #be tuple, list or ndarray
      
        
        input_vector = np.array(input_vector, ndmin=2).T#输入
        target_vector = np.array(target_vector, ndmin=2).T#输出
        
        output_vector1 = np.dot(self.weight_1, input_vector) #隐藏层值
        output_hidden1 = activation_function(output_vector1)#删除不激活
        
        output_vector2 = np.dot(self.weight_2, output_hidden1)#输出
        output_hidden2 = activation_function(output_vector2)#删除不激活
        
        output_vector3 = np.dot(self.weight_3, output_hidden2)#输出
        output_network = activation_function(output_vector3)##删除不激活
        
        
        # calculate output errors:计算输出误差
        output_errors = target_vector - output_network
        
        # update the weights:更新权重
        tmp = output_errors * output_network * (1.0 - output_network)     
        self.weight_3 += self.learning_rate  * np.dot(tmp, output_hidden2.T)
        
        hidden1_errors = np.dot(self.weight_3.T, output_errors)
        
        tmp = hidden1_errors * output_hidden2 * (1.0 - output_hidden2)     
        self.weight_2 += self.learning_rate  * np.dot(tmp, output_hidden1.T)
        # calculate hidden errors:计算隐藏层误差
        hidden_errors = np.dot(self.weight_2.T, hidden1_errors)
        
        # update the weights:
        tmp = hidden_errors * output_hidden1 * (1.0 - output_hidden1)
        self.weight_1 += self.learning_rate * np.dot(tmp, input_vector.T)
        
    #测试集
    def run(self, input_vector):
        # input_vector can be tuple, list or ndarray
        input_vector = np.array(input_vector, ndmin=2).T
        
        output_vector = np.dot(self.weight_1, input_vector)
        output_vector = activation_function(output_vector)
        
        output_vector = np.dot(self.weight_2, output_vector)
        output_vector = activation_function(output_vector)
        
        output_vector = np.dot(self.weight_3, output_vector)
        output_vector = activation_function(output_vector)
        return output_vector
    #判别矩阵
    def confusion_matrix(self, data_array, labels):
        cm = np.zeros((10, 10), int)
        for i in range(len(data_array)):
            res = self.run(data_array[i])
            res_max = res.argmax()
            target = labels[i][0]
            cm[res_max, int(target)] += 1
        return cm    
     #精确度
    def precision(self, label, confusion_matrix):
        col = confusion_matrix[:, label]
        return confusion_matrix[label, label] / col.sum()
    #评估
    def evaluate(self, data, labels):
        corrects, wrongs = 0, 0
        for i in range(len(data)):
            res = self.run(data[i])
            res_max = res.argmax()
            if res_max == labels[i]:
                corrects += 1
            else:
                wrongs += 1
        return corrects, wrongs
        
##迭代30次
epochs = 30
train_acc=[]
test_acc=[]
NN = NeuralNetwork(num_of_in_nodes = image_pixels, 
                   num_of_out_nodes = 10, 
                   num_of_hidden_nodes1 = 100,
                   num_of_hidden_nodes2 = 100,
                   learning_rate = 0.1)
for epoch in range(epochs):  
    print("epoch: ", epoch)
    for i in range(len(train_imgs)):
        NN.train(train_imgs[i], 
                 train_labels_one_hot[i])
  
    corrects, wrongs = NN.evaluate(train_imgs, train_labels)
    print("accuracy train: ", corrects / ( corrects + wrongs))
    train_acc.append(corrects / ( corrects + wrongs))
    corrects, wrongs = NN.evaluate(test_imgs, test_labels)
    print("accuracy: test", corrects / ( corrects + wrongs))
    test_acc.append(corrects / ( corrects + wrongs))

  运行结果:

epoch:  0
accuracy train:  0.8972333333333333
accuracy: test 0.9005
epoch:  1
accuracy train:  0.8891833333333333
accuracy: test 0.8936
epoch:  2
accuracy train:  0.9146833333333333
accuracy: test 0.9182
epoch:  3
D:\ananconda\lib\site-packages\ipykernel_launcher.py:5: RuntimeWarning: overflow encountered in power
  """
accuracy train:  0.8974833333333333
accuracy: test 0.894
epoch:  4
accuracy train:  0.8924166666666666
accuracy: test 0.8974
epoch:  5
accuracy train:  0.91295
accuracy: test 0.914
epoch:  6
accuracy train:  0.9191166666666667
accuracy: test 0.9205
epoch:  7
accuracy train:  0.9117666666666666
accuracy: test 0.9162
epoch:  8
accuracy train:  0.9220333333333334
accuracy: test 0.9222
epoch:  9
accuracy train:  0.9113833333333333
accuracy: test 0.9112
epoch:  10
accuracy train:  0.9134333333333333
accuracy: test 0.911
epoch:  11
accuracy train:  0.9112166666666667
accuracy: test 0.9103
epoch:  12
accuracy train:  0.914
accuracy: test 0.9126
epoch:  13
accuracy train:  0.9206833333333333
accuracy: test 0.9214
epoch:  14
accuracy train:  0.90945
accuracy: test 0.9073
epoch:  15
accuracy train:  0.9225166666666667
accuracy: test 0.9287
epoch:  16
accuracy train:  0.9226
accuracy: test 0.9205
epoch:  17
accuracy train:  0.9239833333333334
accuracy: test 0.9202
epoch:  18
accuracy train:  0.91925
accuracy: test 0.9191
epoch:  19
accuracy train:  0.9223166666666667
accuracy: test 0.92
epoch:  20
accuracy train:  0.9113
accuracy: test 0.9084
epoch:  21
accuracy train:  0.9241666666666667
accuracy: test 0.925
epoch:  22
accuracy train:  0.9236333333333333
accuracy: test 0.9239
epoch:  23
accuracy train:  0.9301166666666667
accuracy: test 0.9259
epoch:  24
accuracy train:  0.9195166666666666
accuracy: test 0.9186
epoch:  25
accuracy train:  0.9200833333333334
accuracy: test 0.9144
epoch:  26
accuracy train:  0.9204833333333333
accuracy: test 0.9186
epoch:  27
accuracy train:  0.9288666666666666
accuracy: test 0.9259
epoch:  28
accuracy train:  0.9293
accuracy: test 0.9282
epoch:  29
accuracy train:  0.9254666666666667
accuracy: test 0.9242

3.2.2 正确率绘图

  运行程序:

#正确率绘图
# matplotlib其实是不支持显示中文的 显示中文需要一行代码设置字体  
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rcParams['font.family'] = 'SimHei'  
plt.rcParams['axes.unicode_minus'] = False   # 步骤二(解决坐标轴负数的负号显示问题)  
import matplotlib.pyplot as plt 
x=np.arange(1,31,1)
plt.title('隐藏层数为2时正确率')
plt.plot(x, train_acc, color='green', label='训练集')
plt.plot(x, test_acc, color='red', label='测试集')
plt.legend() # 显示图例
plt.show()

  运行结果:

相关文章
|
25天前
|
人工智能 安全 Shell
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
107 2
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
|
23天前
|
调度 Python
探索Python高级并发与网络编程技术。
可以看出,Python的高级并发和网络编程极具挑战,却也饱含乐趣。探索这些技术,你将会发现:它们好比是Python世界的海洋,有穿越风暴的波涛,也有寂静深海的奇妙。开始旅途,探索无尽可能吧!
50 15
|
1月前
|
监控 供应链 数据挖掘
淘宝商品详情API接口解析与 Python 实战指南
淘宝商品详情API接口是淘宝开放平台提供的编程工具,支持开发者获取商品详细信息,包括基础属性、价格、库存、销售策略及卖家信息等。适用于电商数据分析、竞品分析与价格策略优化等场景。接口功能涵盖商品基础信息、详情描述、图片视频资源、SKU属性及评价统计的查询。通过构造请求URL和签名,可便捷调用数据。典型应用场景包括电商比价工具、商品数据分析平台、供应链管理及营销活动监控等,助力高效运营与决策。
167 26
|
26天前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
66 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
28天前
|
存储 机器学习/深度学习 人工智能
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
本文探讨了多模态RAG系统的最优实现方案,通过模态特定处理与后期融合技术,在性能、准确性和复杂度间达成平衡。系统包含文档分割、内容提取、HTML转换、语义分块及向量化存储五大模块,有效保留结构和关系信息。相比传统方法,该方案显著提升了复杂查询的检索精度(+23%),并支持灵活升级。文章还介绍了查询处理机制与优势对比,为构建高效多模态RAG系统提供了实践指导。
254 0
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
|
1月前
|
机器学习/深度学习 人工智能 算法
Python+YOLO v8 实战:手把手教你打造专属 AI 视觉目标检测模型
本文介绍了如何使用 Python 和 YOLO v8 开发专属的 AI 视觉目标检测模型。首先讲解了 YOLO 的基本概念及其高效精准的特点,接着详细说明了环境搭建步骤,包括安装 Python、PyCharm 和 Ultralytics 库。随后引导读者加载预训练模型进行图片验证,并准备数据集以训练自定义模型。最后,展示了如何验证训练好的模型并提供示例代码。通过本文,你将学会从零开始打造自己的目标检测系统,满足实际场景需求。
326 0
Python+YOLO v8 实战:手把手教你打造专属 AI 视觉目标检测模型
|
25天前
|
数据采集 存储 数据可视化
2025python实战:利用海外代理IP验证广告投放效果
本文介绍了如何利用Python结合海外代理IP技术,验证广告在不同国家的实际投放效果。通过模拟各地网络环境访问广告页面,检查内容是否与计划一致,并生成曝光报告。具体实现包括:获取高质量代理IP、使用Selenium或Playwright模拟用户行为、解析广告内容及生成可视化报告。案例显示,该方法能有效确保广告精准投放,优化策略并节省预算。
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
10月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
154 9
|
11月前
|
机器学习/深度学习 编解码 数据可视化
图神经网络版本的Kolmogorov Arnold(KAN)代码实现和效果对比
目前我们看到有很多使用KAN替代MLP的实验,但是目前来说对于图神经网络来说还没有类似的实验,今天我们就来使用KAN创建一个图神经网络Graph Kolmogorov Arnold(GKAN),来测试下KAN是否可以在图神经网络方面有所作为。
301 1

热门文章

最新文章

推荐镜像

更多