显著提升深度学习 GPU 利用率,阿里云拿下国际网络顶会优胜奖!

简介: 显著提升深度学习 GPU 利用率,阿里云拿下国际网络顶会优胜奖!


国际网络通信顶会SIGCOMM近日闭幕

阿里云共有7篇论文入选

其中,AI网络调度成果论文

斩获SIGCOMM 2024优胜奖!


图|阿里云获 SIGCOMM 2024 优胜奖论文


SIGCOMM 评审专家认为 ——

Crux解决了多租环境深度学习中的一个基础性问题,通过理论创新和实践分析设计了一套高效的解决方案,因此授予 Crux 成果论文SIGCOMM优胜奖。


此次,获奖论文Crux: GPU-Efficient Communication Scheduling for Deep Learning Training 介绍了阿里云自研的集合通信优化调度器 Crux,其可提升高达 14.8%的GPU 计算利用率。


阿里云网络研发团队从实际业务环境的深度学习任务出发,发现任务之间存在通信竞争,是GPU集群的训练效率不高的基础性原因。


对此,团队从学术理论层面突破,证明了GPU利用率问题与基于任务优先级的通信调度问题是近似的,进而创新设计了集合通信优化调度器 Crux,实现更高效的选路和优先级分配机制,提升了 GPU 计算利用率。


126244c683f5eec8844d936370d4216e.png

图|阿里云自研集合通信优化调度器 Crux,

提升 GPU 计算利用率


实验结果表明,在96卡GPU测试环境中,Crux可以提高GPU计算利用率 8.3% 至 14.8%。在基于大规模生产跟踪仿真中,与Sincronia、TACCL和 CASSINI等已有方案相比,Crux可以将GPU计算利用率最多提高23%。据了解,Crux已被集成到阿里云自研通信库,实现规模化使用。


5a0aa0dfa1f3c6226f35408a9f849762.png

图|阿里云网络研发团队与大会程序委员会主席合影


从 2019 年以来,阿里云有近30篇成果论文先后发表在 SIGCOMM上,为国内机构之首。今年,阿里云有7篇论文入选SIGCOMM。除上述介绍的Crux论文外,今年关于智算集群网络架构HPN 7.0的成果论文,成为 SIGCOMM在AI智算集群网络架构领域的首篇论文。


HPN7.0架构面向AI时代对网络高性能需求而研发,针对大模型训练场景下规模大、大流多、突发强烈、稳定性需求高的特点,创新性地设计了“双上联+多轨+双平面”的网络架构,并配合最新一代的51.2Tbps单芯片以太网交换机和400G 高性能网卡,自研Solar-RDMA和ACCL通信库,实现了单层千卡、两层万卡的高性能和高稳定互联。


369892d344061362b8bcf3eb1a99f1ef.png

图|HPN7.0架构:为AI设计的高性能网络集群


ACM SIGCOMM是计算机网络通信领域历史最悠久、最权威的顶级学术会议,至今已有 50 多年的历史。SIGCOMM对论文质量要求极高,成果也被学术界和业界视为网络通信领域未来发展的风向标,现在耳熟能详的各种协议、技术几乎都发表在 SIGCOMM上。2024 年度的SIGCOMM 仅录用 62 篇论文, 录取率不到17%,为近五年最低。SIGCOMM 2024 优胜奖(Honorable Mentions,也即最佳论文候选),是对论文成果的业务创新价值和行业影响力的综合评价。




/ END /

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
11天前
|
机器学习/深度学习 人工智能 网络架构
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
31 1
|
13天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
15天前
|
云安全 人工智能 安全
阿里云稳居公共云网络安全即服务市占率第一
日前,全球领先的IT市场研究和咨询公司IDC发布了《中国公有云网络安全即服务市场份额,2023:规模稳步增长,技术创新引领市场格局》报告。报告显示,阿里云以27.0%的市场份额蝉联榜首。
|
18天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
16天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
61 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
21天前
|
人工智能 运维 网络架构
阿里云引领智算集群网络架构的新一轮变革
11月8日至10日,CCF ChinaNet(中国网络大会)在江苏张家港召开,众多院士、教授和技术领袖共聚一堂,探讨网络未来发展方向。阿里云研发副总裁蔡德忠发表主题演讲,展望智算技术发展趋势,提出智算网络架构变革的新思路,发布高通量以太网协议和ENode+超节点系统规划,引起广泛关注。阿里云HPN7.0引领智算以太网生态蓬勃发展,成为业界标杆。未来,X10规模的智算集群将面临新的挑战,Ethernet将成为主流方案,推动Scale up与Scale out的融合架构,提升整体系统性能。
|
20天前
|
人工智能 安全 Cloud Native