显著提升深度学习 GPU 利用率,阿里云拿下国际网络顶会优胜奖!

简介: 显著提升深度学习 GPU 利用率,阿里云拿下国际网络顶会优胜奖!


国际网络通信顶会SIGCOMM近日闭幕

阿里云共有7篇论文入选

其中,AI网络调度成果论文

斩获SIGCOMM 2024优胜奖!


图|阿里云获 SIGCOMM 2024 优胜奖论文


SIGCOMM 评审专家认为 ——

Crux解决了多租环境深度学习中的一个基础性问题,通过理论创新和实践分析设计了一套高效的解决方案,因此授予 Crux 成果论文SIGCOMM优胜奖。


此次,获奖论文Crux: GPU-Efficient Communication Scheduling for Deep Learning Training 介绍了阿里云自研的集合通信优化调度器 Crux,其可提升高达 14.8%的GPU 计算利用率。


阿里云网络研发团队从实际业务环境的深度学习任务出发,发现任务之间存在通信竞争,是GPU集群的训练效率不高的基础性原因。


对此,团队从学术理论层面突破,证明了GPU利用率问题与基于任务优先级的通信调度问题是近似的,进而创新设计了集合通信优化调度器 Crux,实现更高效的选路和优先级分配机制,提升了 GPU 计算利用率。


126244c683f5eec8844d936370d4216e.png

图|阿里云自研集合通信优化调度器 Crux,

提升 GPU 计算利用率


实验结果表明,在96卡GPU测试环境中,Crux可以提高GPU计算利用率 8.3% 至 14.8%。在基于大规模生产跟踪仿真中,与Sincronia、TACCL和 CASSINI等已有方案相比,Crux可以将GPU计算利用率最多提高23%。据了解,Crux已被集成到阿里云自研通信库,实现规模化使用。


5a0aa0dfa1f3c6226f35408a9f849762.png

图|阿里云网络研发团队与大会程序委员会主席合影


从 2019 年以来,阿里云有近30篇成果论文先后发表在 SIGCOMM上,为国内机构之首。今年,阿里云有7篇论文入选SIGCOMM。除上述介绍的Crux论文外,今年关于智算集群网络架构HPN 7.0的成果论文,成为 SIGCOMM在AI智算集群网络架构领域的首篇论文。


HPN7.0架构面向AI时代对网络高性能需求而研发,针对大模型训练场景下规模大、大流多、突发强烈、稳定性需求高的特点,创新性地设计了“双上联+多轨+双平面”的网络架构,并配合最新一代的51.2Tbps单芯片以太网交换机和400G 高性能网卡,自研Solar-RDMA和ACCL通信库,实现了单层千卡、两层万卡的高性能和高稳定互联。


369892d344061362b8bcf3eb1a99f1ef.png

图|HPN7.0架构:为AI设计的高性能网络集群


ACM SIGCOMM是计算机网络通信领域历史最悠久、最权威的顶级学术会议,至今已有 50 多年的历史。SIGCOMM对论文质量要求极高,成果也被学术界和业界视为网络通信领域未来发展的风向标,现在耳熟能详的各种协议、技术几乎都发表在 SIGCOMM上。2024 年度的SIGCOMM 仅录用 62 篇论文, 录取率不到17%,为近五年最低。SIGCOMM 2024 优胜奖(Honorable Mentions,也即最佳论文候选),是对论文成果的业务创新价值和行业影响力的综合评价。




/ END /

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
1月前
|
存储 机器学习/深度学习 数据库
阿里云服务器X86/ARM/GPU/裸金属/超算五大架构技术特点、场景适配参考
在云计算技术飞速发展的当下,云计算已经渗透到各个行业,成为企业数字化转型的关键驱动力。选择合适的云服务器架构对于提升业务效率、降低成本至关重要。阿里云提供了多样化的云服务器架构选择,包括X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器以及高性能计算等。本文将深入解析这些架构的特点、优势及适用场景,以供大家了解和选择参考。
305 61
|
2月前
|
供应链 安全 网络协议
|
2月前
|
边缘计算 安全 算法
阿里云CDN:构建全球化智能加速网络的数字高速公路
阿里云CDN构建全球化智能加速网络,拥有2800多个边缘节点覆盖67个国家,实现毫秒级网络延迟。其三级节点拓扑结构与智能路由系统,结合流量预测模型,确保高命中率。全栈式加速技术包括QUIC协议优化和Brotli压缩算法,保障安全与性能。五层防御机制有效抵御攻击,行业解决方案涵盖视频、物联网及游戏等领域,支持新兴AR/VR与元宇宙需求,持续推动数字内容分发技术边界。
122 13
|
1月前
|
人工智能 算法 异构计算
阿里云基础网络技术5篇论文入选全球网络顶会NSDI
近日,阿里云基础网络技术5篇论文被NSDI 2025主会录用。研究涵盖大模型训练网络故障诊断、仿真、容器网络性能诊断、CDN流控算法智能选择及GPU解耦推理优化等领域。其中,《Evolution of Aegis》提出增强现有体系+训练过程感知的两阶段演进路线,显著降低故障诊断耗时;《SimAI》实现高精度大模型集群训练模拟;《Learning Production-Optimized Congestion Control Selection》通过AliCCS优化CDN拥塞控制;《Prism》设计全新GPU解耦推理方案;《ScalaCN》解决容器化RDMA场景性能问题。
84 7
阿里云基础网络技术5篇论文入选全球网络顶会NSDI
|
1月前
|
canal 负载均衡 智能网卡
阿里云洛神云网络论文入选SIGCOMM'25主会,相关实习生岗位火热招聘中
阿里云飞天洛神云网络的两项核心技术Nezha和Hermes被SIGCOMM 2025主会录用。Nezha通过计算网络解耦实现vSwitch池化架构,大幅提升网络性能;Hermes则提出用户态引导I/O事件通知框架,优化L7负载均衡。这两项技术突破解决了云网络中的关键问题,展现了阿里云在网络领域的领先实力。
271 2
|
2月前
|
人工智能 运维 监控
阿里云携手神州灵云打造云内网络性能监测标杆 斩获中国信通院高质量数字化转型十大案例——金保信“云内网络可观测”方案树立云原生运维新范式
2025年,金保信社保卡有限公司联合阿里云与神州灵云申报的《云内网络性能可观测解决方案》入选高质量数字化转型典型案例。该方案基于阿里云飞天企业版,融合云原生引流技术和流量“染色”专利,解决云内运维难题,实现主动预警和精准观测,将故障排查时间从数小时缩短至15分钟,助力企业降本增效,形成可跨行业复制的数字化转型方法论。
103 6
|
2月前
|
存储 机器学习/深度学习 算法
阿里云X86/ARM/GPU/裸金属/超算等五大服务器架构技术特点、场景适配与选型策略
在我们选购阿里云服务器的时候,云服务器架构有X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器、高性能计算可选,有的用户并不清楚他们之间有何区别。本文将深入解析这些架构的特点、优势及适用场景,帮助用户更好地根据实际需求做出选择。
|
2月前
|
机器学习/深度学习 人工智能 运维
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
72 8
|
3月前
|
机器学习/深度学习 数据采集 算法
基于MobileNet深度学习网络的MQAM调制类型识别matlab仿真
本项目基于Matlab2022a实现MQAM调制类型识别,使用MobileNet深度学习网络。完整程序运行效果无水印,核心代码含详细中文注释和操作视频。MQAM调制在无线通信中至关重要,MobileNet以其轻量化、高效性适合资源受限环境。通过数据预处理、网络训练与优化,确保高识别准确率并降低计算复杂度,为频谱监测、信号解调等提供支持。
|
3月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
236 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能

热门文章

最新文章