【深度学习】使用PyTorch构建神经网络:深度学习实战指南

简介: PyTorch是一个开源的Python机器学习库,特别专注于深度学习领域。它由Facebook的AI研究团队开发并维护,因其灵活的架构、动态计算图以及在科研和工业界的广泛支持而受到青睐。PyTorch提供了强大的GPU加速能力,使得在处理大规模数据集和复杂模型时效率极高。

 PyTorch是一个开源的Python机器学习库,特别专注于深度学习领域。它由Facebook的AI研究团队开发并维护,因其灵活的架构、动态计算图以及在科研和工业界的广泛支持而受到青睐。PyTorch提供了强大的GPU加速能力,使得在处理大规模数据集和复杂模型时效率极高。

PyTorch的核心特点:

  1. 动态计算图:与TensorFlow等库的静态计算图不同,PyTorch使用动态计算图。这意味着你可以像编写常规Python代码一样定义和修改模型,这大大提高了实验的灵活性和调试的便利性。
  2. 易于使用的API:PyTorch提供了一个简洁直观的API,使得构建和理解深度学习模型变得相对直接,即便是对于初学者也很友好。
  3. 强大的自动微分功能:通过其自动梯度系统,PyTorch可以自动计算模型中所有变量相对于损失函数的梯度,这对于训练神经网络至关重要。
  4. 广泛的社区和资源:PyTorch拥有一个活跃的开发者社区,提供了大量的教程、示例代码和预训练模型,帮助用户快速上手并深入学习。

使用PyTorch构建神经网络实例1:

以下是一个简单的例子,展示如何使用PyTorch构建一个基本的多层感知器(MLP)神经网络,并进行训练。

1. 导入必要的库

import torch
import torch.nn as nn
import torch.optim as optim

image.gif

2. 定义神经网络结构

class Net(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size) 
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(hidden_size, num_classes)  
    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        return out

image.gif

3. 初始化网络和相关组件

# 假设输入特征维度为784,隐藏层维度为500,分类任务有10个类别
net = Net(784, 500, 10)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

image.gif

4. 训练网络

# 假设我们有一个数据加载器data_loader,用于获取训练数据
for epoch in range(num_epochs):  
    running_loss = 0.0
    for i, (inputs, labels) in enumerate(data_loader, 0):
        # 将输入数据转换为浮点数并送入设备(如GPU)
        inputs, labels = inputs.float(), labels.long()
        
        # 梯度清零
        optimizer.zero_grad()
        # 前向传播
        outputs = net(inputs)
        # 计算损失
        loss = criterion(outputs, labels)
        # 反向传播和优化
        loss.backward()
        optimizer.step()
        # 打印统计信息
        running_loss += loss.item()
    print(f'Epoch {epoch + 1}, Loss: {running_loss / (i + 1)}')

image.gif

5. 测试和评估模型

这部分通常包括在测试集上评估模型的性能,比如计算准确率等指标。

使用PyTorch构建神经网络实例2:

下面是:一个简单的例子,说明如何使用PyTorch构建一个简单的全连接神经网络(FCN)进行二分类任务:

1.导入必要的库

import torch  
import torch.nn as nn  
import torch.optim as optim  
from torch.utils.data import DataLoader, TensorDataset

image.gif

2. 定义神经网络结构

class SimpleNet(nn.Module):  
    def __init__(self, input_size, hidden_size, num_classes):  
        super(SimpleNet, self).__init__()  
        self.fc1 = nn.Linear(input_size, hidden_size)  
        self.relu = nn.ReLU()  
        self.fc2 = nn.Linear(hidden_size, num_classes)  
  
    def forward(self, x):  
        out = self.fc1(x)  
        out = self.relu(out)  
        out = self.fc2(out)  
        return out

image.gif

3.创建网络实例

input_size = 784  # 假设输入是28x28的图像  
hidden_size = 128  
num_classes = 2  # 二分类问题  
model = SimpleNet(input_size, hidden_size, num_classes)

image.gif

4. 定义损失函数和优化器

criterion = nn.CrossEntropyLoss()  
optimizer = optim.SGD(model.parameters(), lr=0.01)

image.gif

5. 准备数据(这里省略了数据的加载和预处理过程,只假设我们已经有了一个DataLoader)

# 假设我们有一个DataLoader实例叫做data_loader

image.gif

6. 训练网络

num_epochs = 10  
for epoch in range(num_epochs):  
    for i, (inputs, labels) in enumerate(data_loader):  
        # 清空梯度缓存  
        optimizer.zero_grad()  
  
        # 前向传播  
        outputs = model(inputs)  
  
        # 计算损失  
        loss = criterion(outputs, labels)  
  
        # 反向传播和优化  
        loss.backward()  
        optimizer.step()  
  
        # 打印统计信息(可选)  
        if (i+1) % 100 == 0:  
            print(f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{len(data_loader)}], Loss: {loss.item():.4f}')

image.gif

7. 评估网络(这里省略了评估过程,但通常会涉及在验证集或测试集上运行网络并计算性能指标)

以上就是使用PyTorch构建神经网络的一个基本框架。随着对PyTorch更深入的学习,你可以探索更多高级功能,如卷积神经网络(CNN)、循环神经网络(RNN)、迁移学习等,以及如何利用PyTorch Lightning等高级库来简化和加速深度学习项目开发。

人工智能相关文章推荐阅读:

1.TF-IDF算法在人工智能方面的应用,附带代码

2.深度解读 ChatGPT基本原理

3.【AIGC】AIGC全面介绍

4.学习人工智能需要学习哪些课程,从入门到进阶到高级课程区分

5.【神经网络】基于对抗神经网络的图像生成是如何实现的


目录
相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
51 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
9天前
|
Shell 网络架构 计算机视觉
RT-DETR改进策略【模型轻量化】| ShufflenetV2,通过通道划分构建高效网络
RT-DETR改进策略【模型轻量化】| ShufflenetV2,通过通道划分构建高效网络
26 5
|
13天前
|
Shell 网络架构 计算机视觉
YOLOv11改进策略【模型轻量化】| ShufflenetV2,通过通道划分构建高效网络
YOLOv11改进策略【模型轻量化】| ShufflenetV2,通过通道划分构建高效网络
44 14
|
15天前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
162 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
22天前
|
机器学习/深度学习 搜索推荐 PyTorch
基于昇腾用PyTorch实现传统CTR模型WideDeep网络
本文介绍了如何在昇腾平台上使用PyTorch实现经典的WideDeep网络模型,以处理推荐系统中的点击率(CTR)预测问题。
189 66
|
1月前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
54 18
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
135 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
1月前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
216 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
2月前
|
机器学习/深度学习 人工智能 PyTorch
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
本文探讨了Transformer模型中变长输入序列的优化策略,旨在解决深度学习中常见的计算效率问题。文章首先介绍了批处理变长输入的技术挑战,特别是填充方法导致的资源浪费。随后,提出了多种优化技术,包括动态填充、PyTorch NestedTensors、FlashAttention2和XFormers的memory_efficient_attention。这些技术通过减少冗余计算、优化内存管理和改进计算模式,显著提升了模型的性能。实验结果显示,使用FlashAttention2和无填充策略的组合可以将步骤时间减少至323毫秒,相比未优化版本提升了约2.5倍。
85 3
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
|
4月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
612 2

热门文章

最新文章

推荐镜像

更多