【从零开始学习深度学习】4.基于pytorch框架自带模型实现线性回归的训练过程

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,5000CU*H 3个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: 【从零开始学习深度学习】4.基于pytorch框架自带模型实现线性回归的训练过程

1.1 生成数据集


我们生成与上一篇文章中相同的数据集。其中features是训练数据特征,labels是标签。样本形状为1000*2。


num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
# 给标签假如噪音
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)

1.2 读取数据


PyTorch提供了data包来读取数据。由于data常用作变量名,我们将导入的data模块用Data代替。在每一次迭代中,我们将随机读取包含10个数据样本的小批量。


import torch.utils.data as Data
batch_size = 10
# 将训练数据的特征和标签组合
dataset = Data.TensorDataset(features, labels)
# 随机读取小批量
data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)


这里data_iter的使用跟上一节中的一样。让我们读取并打印第一个小批量数据样本。


for X, y in data_iter:
    print(X, y)
    break


输出:


tensor([[-2.7723, -0.6627],
        [-1.1058,  0.7688],
        [ 0.4901, -1.2260],
        [-0.7227, -0.2664],
        [-0.3390,  0.1162],
        [ 1.6705, -2.7930],
        [ 0.2576, -0.2928],
        [ 2.0475, -2.7440],
        [ 1.0685,  1.1920],
        [ 1.0996,  0.5106]]) 
 tensor([ 0.9066, -0.6247,  9.3383,  3.6537,  3.1283, 17.0213,  5.6953, 17.6279,
         2.2809,  4.6661])


1.3 定义模型


在上一篇文章手动实现中,我们需要定义模型参数,并使用它们一步步描述模型是怎样计算的。当模型结构变得更复杂时,这些步骤将变得更繁琐。其实,PyTorch提供了大量预定义的层,这使我们只需关注使用哪些层来构造模型。下面将介绍如何使用PyTorch更简洁地定义线性回归。


首先,导入torch.nn模块。实际上,“nn”是neural networks(神经网络)的缩写。顾名思义,该模块定义了大量神经网络的层。之前我们已经用过了autograd,而nn就是利用autograd来定义模型。nn的核心数据结构是Module,它是一个抽象概念,既可以表示神经网络中的某个层(layer),也可以表示一个包含很多层的神经网络。在实际使用中,最常见的做法是继承nn.Module,撰写自己的网络/层。一个nn.Module实例应该包含一些层以及返回输出的前向传播(forward)方法。下面先来看看如何用nn.Module实现一个线性回归模型。


class LinearNet(nn.Module):
    def __init__(self, n_feature):
        super(LinearNet, self).__init__()
        self.linear = nn.Linear(n_feature, 1)
    # forward 定义前向传播
    def forward(self, x):
        y = self.linear(x)
        return y
net = LinearNet(num_inputs)
print(net) # 使用print可以打印出网络的结构


输出:


LinearNet(
  (linear): Linear(in_features=2, out_features=1, bias=True)
)


事实上我们还可以用nn.Sequential来更加方便地搭建网络,Sequential是一个有序的容器,网络层将按照在传入Sequential的顺序依次被添加到计算图中。


# 写法一
net = nn.Sequential(
    nn.Linear(num_inputs, 1)
    # 此处还可以传入其他层
    )
# 写法二
net = nn.Sequential()
net.add_module('linear', nn.Linear(num_inputs, 1))
# net.add_module ......
# 写法三
from collections import OrderedDict
net = nn.Sequential(OrderedDict([
          ('linear', nn.Linear(num_inputs, 1))
          # ......
        ]))
print(net)
print(net[0])


输出:


Sequential(
  (linear): Linear(in_features=2, out_features=1, bias=True)
)
Linear(in_features=2, out_features=1, bias=True)


可以通过net.parameters()来查看模型所有的可学习参数,此函数将返回一个生成器。


for param in net.parameters():
    print(param)


输出:


Parameter containing:
tensor([[-0.0277,  0.2771]], requires_grad=True)
Parameter containing:
tensor([0.3395], requires_grad=True)


回顾图3.1中线性回归在神经网络图中的表示。作为一个单层神经网络,线性回归输出层中的神经元和输入层中各个输入完全连接。因此,线性回归的输出层又叫全连接层。


注意:torch.nn仅支持输入一个batch的样本不支持单个样本输入,如果只有单个样本,可使用input.unsqueeze(0)来添加一维。


1.4 初始化模型参数


在使用net前,我们需要初始化模型参数,如线性回归模型中的权重和偏差。PyTorch在init模块中提供了多种参数初始化方法。这里的init是initializer的缩写形式。我们通过init.normal_将权重参数每个元素初始化为随机采样于均值为0、标准差为0.01的正态分布。偏差会初始化为零。


from torch.nn import init
init.normal_(net[0].weight, mean=0, std=0.01)
init.constant_(net[0].bias, val=0)  # 也可以直接修改bias的data: net[0].bias.data.fill_(0)

注:如果这里的net是用1.3节一开始的代码自定义的,那么上面代码会报错,net[0].weight应改为net.linear.weightbias亦然。因为net[0]这样根据下标访问子模块的写法只有当net是个ModuleList或者Sequential实例时才可以。


1.5 定义损失函数


PyTorch在nn模块中提供了各种损失函数,这些损失函数可看作是一种特殊的层,PyTorch也将这些损失函数实现为nn.Module的子类。我们现在使用它提供的均方误差损失作为模型的损失函数。


loss = nn.MSELoss()


1.6 定义优化算法


同样,我们也无须自己实现小批量随机梯度下降算法。torch.optim模块提供了很多常用的优化算法比如SGD、Adam和RMSProp等。下面我们创建一个用于优化net所有参数的优化器实例,并指定学习率为0.03的小批量随机梯度下降(SGD)为优化算法。


import torch.optim as optim
optimizer = optim.SGD(net.parameters(), lr=0.03)
print(optimizer)


输出:


SGD (
Parameter Group 0
    dampening: 0
    lr: 0.03
    momentum: 0
    nesterov: False
    weight_decay: 0
)


我们还可以为不同子网络设置不同的学习率,这在微调时经常用到。例:


optimizer =optim.SGD([
                # 如果对某个参数不指定学习率,就使用最外层的默认学习率
                {'params': net.subnet1.parameters()}, # lr=0.03
                {'params': net.subnet2.parameters(), 'lr': 0.01}
            ], lr=0.03)


有时候我们不想让学习率固定成一个常数,那如何调整学习率呢?主要有两种做法。一种是修改optimizer.param_groups中对应的学习率,另一种是更简单也是较为推荐的做法——新建优化器,由于optimizer十分轻量级,构建开销很小,故而可以构建新的optimizer。但是后者对于使用动量的优化器(如Adam),会丢失动量等状态信息,可能会造成损失函数的收敛出现震荡等情况。


# 调整学习率
for param_group in optimizer.param_groups:
    param_group['lr'] *= 0.1 # 学习率为之前的0.1倍

1.7 训练模型


在pytorch训练模型时,我们通过调用optim实例的step函数来迭代模型参数。按照小批量随机梯度下降的定义,我们在step函数中指明批量大小,从而对批量中样本梯度求平均。


num_epochs = 3
for epoch in range(1, num_epochs + 1):
    for X, y in data_iter:
        output = net(X)
        l = loss(output, y.view(-1, 1))
        optimizer.zero_grad() # 梯度清零,等价于net.zero_grad()
        l.backward()
        optimizer.step()  # 将参数进行修改迭代
    print('epoch %d, loss: %f' % (epoch, l.item()))


输出:


epoch 1, loss: 0.000457
epoch 2, loss: 0.000081
epoch 3, loss: 0.000198


下面我们分别比较学到的模型参数和真实的模型参数。我们从net获得需要的层,并访问其权重(weight)和偏差(bias)。学到的参数和真实的参数很接近。


dense = net[0]
print(true_w, dense.weight)
print(true_b, dense.bias)


输出:


[2, -3.4] tensor([[ 1.9999, -3.4005]])
4.2 tensor([4.2011])


完整代码


import torch
from torch import nn
import numpy as np
torch.manual_seed(1)
print(torch.__version__)
torch.set_default_tensor_type('torch.FloatTensor')
# 生成数据集
num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)), dtype=torch.float)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
# 给标签假如噪音
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)
# 读取数据
import torch.utils.data as Data
batch_size = 10
# 将训练数据的特征和标签组合
dataset = Data.TensorDataset(features, labels)
# 把 dataset 放入 DataLoader
data_iter = Data.DataLoader(
    dataset=dataset,      # torch TensorDataset format
    batch_size=batch_size,      # mini batch size
    shuffle=True,               # 要不要打乱数据 (打乱比较好)
    num_workers=2,              # 多线程来读数据
)
# 定义模型
net = nn.Sequential(
    nn.Linear(num_inputs, 1)
    # 此处还可以传入其他层
    )
# 初始化参数
from torch.nn import init
init.normal_(net[0].weight, mean=0.0, std=0.01)
init.constant_(net[0].bias, val=0.0)
# 定义损失函数
loss = nn.MSELoss()
# 定义优化算法
import torch.optim as optim
optimizer = optim.SGD(net.parameters(), lr=0.03)
# 训练模型
num_epochs = 3
for epoch in range(1, num_epochs + 1):
    for X, y in data_iter:
        output = net(X)
        l = loss(output, y.view(-1, 1))
        optimizer.zero_grad() # 梯度清零,等价于net.zero_grad()
        l.backward()
        optimizer.step()
    print('epoch %d, loss: %f' % (epoch, l.item()))
# 结果与真实值对比
dense = net[0]
print(true_w, dense.weight.data)
print(true_b, dense.bias.data)


小结


  • 使用PyTorch可以更简洁地实现模型。
  • torch.utils.data模块提供了有关数据处理的工具,torch.nn模块定义了大量神经网络的层,torch.nn.init模块定义了各种初始化方法,torch.optim模块提供了很多常用的优化算法。
相关文章
|
7天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
48 9
|
27天前
|
机器学习/深度学习 传感器 人工智能
深度学习之自主学习和任务规划
基于深度学习的自主学习和任务规划,是指通过深度学习算法使人工智能(AI)系统能够自主地从环境中学习,并根据特定的目标和任务,规划出有效的解决方案。
43 3
|
26天前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
119 2
|
3天前
|
机器学习/深度学习 监控 PyTorch
深度学习工程实践:PyTorch Lightning与Ignite框架的技术特性对比分析
在深度学习框架的选择上,PyTorch Lightning和Ignite代表了两种不同的技术路线。本文将从技术实现的角度,深入分析这两个框架在实际应用中的差异,为开发者提供客观的技术参考。
18 7
|
26天前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
124 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
17天前
|
机器学习/深度学习 存储 自然语言处理
深度学习之少样本学习
少样本学习(Few-Shot Learning, FSL)是深度学习中的一个重要研究领域,其目标是在只有少量标注样本的情况下,训练出能够很好地泛化到新类别或新任务的模型。
14 2
|
23天前
|
机器学习/深度学习 自然语言处理 计算机视觉
深度学习中的迁移学习技术
【10月更文挑战第11天】 本文探讨了深度学习中的迁移学习技术,并深入分析了其原理、应用场景及实现方法。通过实例解析,展示了迁移学习如何有效提升模型性能和开发效率。同时,文章也讨论了迁移学习面临的挑战及其未来发展方向。
|
7天前
|
安全 搜索推荐 机器学习/深度学习
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】在人工智能的推动下,个性化学习系统逐渐成为教育领域的重要趋势。深度学习作为AI的核心技术,在构建个性化学习系统中发挥关键作用。本文探讨了深度学习在个性化推荐系统、智能辅导系统和学习行为分析中的应用,并提供了代码示例,展示了如何使用Keras构建模型预测学生对课程的兴趣。尽管面临数据隐私和模型可解释性等挑战,深度学习仍有望为教育带来更个性化和高效的学习体验。
32 0
|
24天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习之生物启发的学习系统
基于深度学习的生物启发学习系统(Biologically Inspired Learning Systems)旨在借鉴生物大脑的结构和学习机制,设计出更高效、更灵活的人工智能系统。
14 0
|
28天前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
50 8
利用 PyTorch Lightning 搭建一个文本分类模型