uv找不到Python头文件的解决方案
最近在微调LLM的时候,我发现使用uv构建的环境,有时候会找不到Python.h,导致一些库报错,如`fatal error: Python.h: No such file or directory`。通过设置`python-preference`可以解决。
机器学习实战 | LightGBM建模应用详解
本篇详细讲解LightGBM的工程应用方法。LightGBM是微软开发的boosting集成模型,和XGBoost一样是对GBDT的优化和高效实现,但它很多方面比XGBoost有着更为优秀的表现。
阿里云PAI大模型RAG对话系统最佳实践
本文为大模型RAG对话系统最佳实践,旨在指引AI开发人员如何有效地结合LLM大语言模型的推理能力和外部知识库检索增强技术,从而显著提升对话系统的性能,使其能更加灵活地返回用户查询的内容。适用于问答、摘要生成和其他依赖外部知识的自然语言处理任务。通过该实践,您可以掌握构建一个大模型RAG对话系统的完整开发链路。
如何从0部署一个大模型RAG应用
本文介绍了如何从零开始部署一套RAG应用,并将其集成到移动端,如钉钉群聊中。应用场景包括客服系统、智能助手、教育辅导和医疗咨询等。通过阿里云PAI和AppFlow,您可以轻松部署大模型RAG应用,并实现智能化的问答服务。具体步骤包括准备向量检索库、训练私有模型、部署RAG对话应用、创建钉钉应用及配置机器人等。
云上一键部署通义千问 QwQ-32B 模型,阿里云 PAI 最佳实践
3月6日阿里云发布并开源了全新推理模型通义千问 QwQ-32B,在一系列权威基准测试中,千问QwQ-32B模型表现异常出色,几乎完全超越了OpenAI-o1-mini,性能比肩Deepseek-R1,且部署成本大幅降低。并集成了与智能体 Agent 相关的能力,够在使用工具的同时进行批判性思考,并根据环境反馈调整推理过程。阿里云人工智能平台 PAI-Model Gallery 现已经支持一键部署 QwQ-32B,本实践带您部署体验专属 QwQ-32B模型服务。
云上AI推理平台全掌握 (1):PAI-EAS LLM服务一键压测
在AI技术飞速发展的今天,大语言模型(LLM)、多模态模型等前沿技术正深刻改变行业格局。推理服务是大模型从“实验室突破”走向“产业级应用”的必要环节,需直面高并发流量洪峰、低延时响应诉求、异构硬件优化适配、成本精准控制等复杂挑战。
阿里云人工智能平台 PAI 致力于为用户提供全栈式、高可用的推理服务能力。在本系列技术专题中,我们将围绕分布式推理架构、Serverless 弹性资源全球调度、压测调优和服务可观测等关键技术方向,展现 PAI 平台在推理服务侧的产品能力,助力企业和开发者在 AI 时代抢占先机,让我们一起探索云上 AI 推理的无限可能,释放大模型的真正价值!