DeepMesh:3D建模革命!清华团队让AI自动优化拓扑,1秒生成工业级网格

本文涉及的产品
视觉智能开放平台,图像通用资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频通用资源包5000点
简介: DeepMesh 是由清华大学和南洋理工大学联合开发的 3D 网格生成框架,基于强化学习和自回归变换器,能够生成高质量的 3D 网格,适用于虚拟环境构建、动态内容生成、角色动画等多种场景。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦


🖨️ 「ZBrush要过时?清华核弹框架把3D建模变『填空题』」

大家好,我是蚝油菜花。你是否也经历过这些建模地狱——

  • 👉 为调拓扑通宵改7版,甲方却说"还是第一版好看"
  • 👉 点云数据像散沙,手动补面补到视网膜脱落
  • 👉 渲染时发现隐藏面穿模,一夜回到解放前...

今天要炸场的 DeepMesh 正在重构3D工作流!这个学术派AI建模神器:

  • 强化学习造面术:DPO算法让每个三角面都长在人类审美点上
  • 点云秒变精模:稀疏扫描数据直接生成ISO标准工业网格
  • 动态拓扑黑科技:自回归变换器实时修正模型,穿模成为历史

已有游戏团队用它3小时做完角色建模,工业设计公司靠它批量处理扫描数据——你的鼠标,是时候从面片地狱中解放了!

🚀 快速阅读

DeepMesh 是一个基于强化学习和自回归变换器的 3D 网格生成框架。

  1. 核心功能:支持高质量 3D 网格生成、点云条件生成和图像条件生成。
  2. 技术原理:采用自回归变换器、高效预训练策略和强化学习优化,确保生成的网格既精确又符合人类审美。

DeepMesh 是什么

DeepMesh

DeepMesh 是由清华大学和南洋理工大学的研究人员提出的 3D 网格生成框架。它基于强化学习和自回归变换器,能够生成高质量的 3D 网格。通过两项关键创新,DeepMesh 在网格生成的质量和效率上实现了显著提升。

首先,DeepMesh 引入了高效的预训练策略,结合了新型标记化算法和改进的数据处理流程,显著缩短了序列长度,同时保留了几何细节。其次,DeepMesh 采用了直接偏好优化(DPO)的强化学习方法,使生成的网格在几何精度和视觉效果上更符合人类偏好。

DeepMesh 的主要功能

  • 高质量 3D 网格生成:DeepMesh 能生成具有丰富细节和精确拓扑结构的 3D 网格,适用于各种复杂的几何形状。
  • 点云条件生成:DeepMesh 可以根据输入的点云数据生成对应的 3D 网格,适用于从稀疏点云到密集点云的各种场景。
  • 图像条件生成:DeepMesh 支持基于图像的条件生成,能根据输入的 2D 图像生成 3D 网格。

DeepMesh 的技术原理

  • 自回归变换器:DeepMesh 采用自回归变换器作为核心架构,包含自注意力层和交叉注意力层,逐步生成网格的面,通过条件输入(如点云或图像)来预测网格的顶点和面。
  • 高效预训练策略:DeepMesh 引入了一种改进的标记化算法,通过局部感知的面遍历和块索引坐标编码,显著缩短了序列长度,同时保留了几何细节。
  • 强化学习与人类偏好对齐:DeepMesh 引入了直接偏好优化(DPO),通过人工评估和 3D 指标设计评分标准,收集偏好对用于强化学习训练,使生成的网格在几何精度上准确,在视觉效果上更符合人类审美。
  • 端到端可微分的网格表示:DeepMesh 支持端到端可微分的网格表示,拓扑可以动态变化,这种可微分性使模型能通过梯度下降进行优化,进一步提升生成网格的质量。

如何运行 DeepMesh

1. 安装

我们的环境已在 Ubuntu 22、CUDA 11.8 上测试,支持 A100、A800 和 A6000 显卡。

克隆仓库并创建 conda 环境:

git clone https://github.com/zhaorw02/DeepMesh.git && cd DeepMesh
conda env create -f environment.yaml
conda activate deepmesh

安装预训练模型权重:

pip install -U "huggingface_hub[cli]"
huggingface-cli login
huggingface-cli download zzzrw/DeepMesh --local-dir ./

2. 使用

命令行推理

# 生成文件夹中的所有 obj/ply 文件
CUDA_VISIBLE_DEVICES=0 torchrun --nproc-per-node=1 --master-port=12345 sample.py \
    --model_path "your_model_path" \
    --steps 90000 \
    --input_path examples \
    --output_path mesh_output \
    --repeat_num 4 \
    --temperature 0.5 \

# 生成指定的 obj/ply 文件
CUDA_VISIBLE_DEVICES=0 torchrun --nproc-per-node=1 --master-port=22345.py \
    --model_path "your_model_path" \
    --steps 90000 \
    --input_path examples \
    --output_path mesh_output \
    --repeat_num 4 \
    --uid_list "wand1.obj,wand2.obj,wand3.ply" \
    --temperature 0.5 \

# 或者使用脚本
bash sample.sh

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 AI 在线答疑 -> 智能检索历史文章和开源项目 -> 丰富的 AI 工具库 -> 每日更新 -> 尽在微信公众号 -> 搜一搜:蚝油菜花 🥦

相关文章
|
2月前
|
人工智能 文字识别 监控
|
2月前
|
人工智能 安全 架构师
不只是聊天:从提示词工程看AI助手的优化策略
不只是聊天:从提示词工程看AI助手的优化策略
283 119
|
2月前
|
人工智能 缓存 并行计算
用数学重构 AI的设想:流形注意力 + 自然梯度优化的最小可行落地
本文提出两个数学驱动的AI模块:流形感知注意力(D-Attention)与自然梯度优化器(NGD-Opt)。前者基于热核偏置,在局部邻域引入流形结构,降低计算开销;后者在黎曼流形上进行二阶优化,仅对线性层低频更新前置条件。二者均提供可复现代码与验证路径,兼顾性能与工程可行性,助力几何感知的模型设计与训练。
247 1
|
2月前
|
人工智能 自然语言处理 安全
从工具到伙伴:AI代理(Agent)是下一场革命
从工具到伙伴:AI代理(Agent)是下一场革命
269 117
|
2月前
|
人工智能 自然语言处理 算法
AISEO咋做?2025年用AI优化SEO和GEO 的步骤
AISEO是AI与SEO结合的优化技术,通过人工智能生成关键词、标题、内容等,提升网站排名。它支持多语言、自动化创作,并利用高权重平台发布内容,让AI搜索更易抓取引用,实现品牌曝光与流量增长。
|
2月前
|
数据采集 人工智能 程序员
PHP 程序员如何为 AI 浏览器(如 ChatGPT Atlas)优化网站
OpenAI推出ChatGPT Atlas,标志AI浏览器新方向。虽未颠覆现有格局,但为开发者带来新机遇。PHP建站者需关注AI爬虫抓取特性,优化技术结构(如SSR、Schema标记)、提升内容可读性与语义清晰度,并考虑未来agent调用能力。通过robots.txt授权、结构化数据、内容集群与性能优化,提升网站在AI搜索中的可见性与引用机会,提前布局AI驱动的流量新格局。
126 8
|
2月前
|
人工智能 运维 定位技术
【微笑讲堂】AI时代的Geo优化:掌握这些技能,让你的内容被智能引擎“偏爱”
大家好,我是微笑老师!本期讲解“Geo都需要掌握哪些技能”。随着AI搜索兴起,GEO(生成式引擎优化)正取代传统SEO,核心在于让内容被AI“读懂、信任、引用”。需掌握四大技能:结构化数据工程、多模态语义对齐、动态知识图谱运维、权威信源建设。从“被找到”到“被引用”,GEO与SEO融合进化,助力内容在AI时代脱颖而出。未来已来,你准备好了吗?
245 8
|
2月前
|
人工智能 搜索推荐 JavaScript
【微笑讲堂】深度解析:Geo优化中的Schema标签,如何让你的内容在AI时代脱颖而出?
微笑老师详解Geo优化中Schema标签的写法,揭示如何通过结构化数据提升AI时代下的内容可见性。从选择类型、填写关键属性到JSON-LD格式应用与测试验证,全面掌握Geo优化核心技巧,助力本地商家在搜索结果中脱颖而出。(238字)
166 4
|
2月前
|
人工智能 文字识别 自然语言处理
从“看见”到“预见”:合合信息“多模态文本智能技术”如何引爆AI下一场革命。
近期,在第八届中国模式识别与计算机视觉学术会议(PRCV 2025)上,合合信息作为承办方举办了“多模态文本智能大模型前沿技术与应用”论坛,汇聚了学术界的顶尖智慧,更抛出了一颗重磅“炸弹”——“多模态文本智能技术”概念。
150 1

热门文章

最新文章