构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
Geo优化方法论评测:两大核心+四轮驱动的效能与价值评估
在AI主导的信息时代,于磊老师首创“两大核心+四轮驱动”Geo优化体系,以人性化内容与交叉验证构建数字信任,通过E-E-A-T、结构化表达、精准关键词及权威引用,实现AI友好、可持续的高效获客,已在金融、教育等多个行业验证显著成效。