编解码

首页 标签 编解码
# 编解码 #
关注
17070内容
探索无界:前端开发中的响应式设计哲学####
在数字化浪潮汹涌的今天,用户体验成为了产品设计的核心。本文深入探讨了响应式设计在前端开发中的重要性及其背后的技术哲学,通过实际案例分析,阐述了如何运用流体布局、弹性图片与媒体查询等技术手段,实现跨设备的完美呈现。文章强调,响应式设计不仅仅是技术的堆砌,更是一种以用户为中心,追求无缝体验的设计思维。本文旨在为开发者提供新的视角和灵感,促进更加人性化、智能化的界面设计发展。 ####
|
15天前
|
4090笔记本0.37秒直出大片!英伟达联手MIT清华祭出Sana架构,速度秒杀FLUX
英伟达、麻省理工学院与清华大学联合发布Sana,一款高效文本到图像生成框架。Sana通过深度压缩自编码器和线性注意力机制,实现快速高分辨率图像生成,生成1024×1024图像仅需不到1秒。此外,Sana采用解码器专用文本编码器增强文本与图像对齐度,大幅提高生成质量和效率。相比现有模型,Sana体积更小、速度更快,适用于多种设备。
了解与对比主流背景去除工具
本文对比了几款主流的背景去除工具,包括Remove.bg、Removal.ai、RMBG 2.0、Imagga和Wondershare Pixcut,重点介绍了RMBG 2.0这款开源工具的性能、优势及挑战,适用于不同需求的用户选择。
MVPaint:腾讯PCG联合多所高校共同推出的3D纹理生成框架
MVPaint是由腾讯PCG联合多所高校共同推出的3D纹理生成框架,基于同步多视角扩散技术,实现高分辨率、无缝且多视图一致的3D纹理生成。该框架包含三个核心模块:同步多视角生成、空间感知3D修补和UV细化,显著提升3D模型的纹理生成效果。
OneDiffusion:无缝支持双向图像合成和理解的开源扩散模型
OneDiffusion 是一个开源的扩散模型,能够无缝支持双向图像合成和理解。它基于统一的训练框架,支持多种任务,如文本到图像生成、条件图像生成和图像理解等。OneDiffusion 通过流匹配框架和序列建模技术,实现了高度的灵活性和可扩展性。
HART:麻省理工学院推出的自回归视觉生成模型
HART(Hybrid Autoregressive Transformer)是麻省理工学院推出的自回归视觉生成模型,能够直接生成1024×1024像素的高分辨率图像,质量媲美扩散模型。HART基于混合Tokenizer技术,显著提升了图像生成质量和计算效率,适用于数字艺术创作、游戏开发、电影和视频制作等多个领域。
OmniBooth:华为诺亚方舟联合港科大推出的图像生成框架
OmniBooth是由华为诺亚方舟实验室和港科大研究团队联合推出的图像生成框架,支持基于文本提示或图像参考进行空间控制和实例级定制。该框架通过用户定义的掩码和相关联的文本或图像指导,精确控制图像中对象的位置和属性,提升文本到图像合成技术的可控性和实用性。
|
16天前
|
即时通讯技术文集(第44期):微信、QQ技术精华合集(Part1) [共14篇]
为了更好地分类阅读 52im.net 总计1000多篇精编文章,我将在每周三推送新的一期技术文集,本次是第44 期。
|
16天前
|
从基础到人脸识别与目标检测
前言 从本文开始,我们将开始学习ROS机器视觉处理,刚开始先学习一部分外围的知识,为后续的人脸识别、目标跟踪和YOLOV5目标检测做准备工作。我采用的笔记本是联想拯救者游戏本,系统采用Ubuntu20.04,ROS采用noetic。 颜色编码格式,图像格式和视频压缩格式 (1)RGB和BGR:这是两种常见的颜色编码格式,分别代表了红、绿、蓝三原色。不同之处在于,RGB按照红、绿、蓝的顺序存储颜色信息,而BGR按照蓝、绿、红的顺序存储。 rgb8图像格式:常用于显示系统,如电视和计算机屏幕。 RGB值以8 bits表示每种颜色,总共可以表示256×256×256=16777216种颜色
免费试用