智能搜索推荐
智能推荐(Artificial Intelligence Recommendation,简称AIRec)基于阿里巴巴大数据和人工智能技术,以及在电商、内容、直播、社交等领域的业务沉淀,为企业开发者提供场景化推荐服务、全链路推荐系统开发平台、工程引擎组件库等多种形式服务,助力在线业务增长。
前端大模型应用笔记(三):Vue3+Antdv+transformers+本地模型实现浏览器端侧增强搜索
本文介绍了一个纯前端实现的增强列表搜索应用,通过使用Transformer模型,实现了更智能的搜索功能,如使用“番茄”可以搜索到“西红柿”。项目基于Vue3和Ant Design Vue,使用了Xenova的bge-base-zh-v1.5模型。文章详细介绍了从环境搭建、数据准备到具体实现的全过程,并展示了实际效果和待改进点。
百度/Bing/Google搜索引擎使用技巧
本文分享了百度、Bing和Google三大搜索引擎的实用技巧,涵盖精确匹配、排除关键词、站内及文件类型搜索等,如使用双引号进行精确搜索“人工智能应用”,排除特定词如“人工智能 -游戏”,以及在特定网站如“site:baidu.com 人工智能”内查找内容等,帮助提高搜索效率和准确性。
Text-to-SQL技术演进 - 阿里云OpenSearch-SQL在BIRD榜单夺冠方法剖析
本文介绍了Text-to-SQL的技术演进,并对OpenSearch-SQL方法进行剖析。
搜索排名频繁波动,如何做到SEO可控?
在数字营销领域,搜索排名的波动如同海浪般难以捉摸。本文深入剖析波动背后的逻辑,分享应对策略。首先,理解搜索引擎算法更新的重要性,紧跟变化调整优化策略;其次,强调内容质量和稳健的外链建设;再者,通过数据分析和用户体验优化,结合多元化渠道提升品牌曝光度;最后,保持持续学习和灵活应变的心态,实现网站排名稳步提升与品牌价值最大化。
必应SEO优化步骤:提升网站在必应搜索引擎中的排名
本文深入剖析了必应(Bing)搜索引擎的优化策略,为网站管理员提供了一套完整的必应SEO优化步骤。文章内容兼具深度与独特见解,旨在帮助读者在激烈的网络竞争中脱颖而出。助力您的网站迈向更高的排名。
小米教你:2GB内存搞定20亿数据的高效算法
你好,我是小米。本文介绍如何在2GB内存中找出20亿个整数里出现次数最多的数。通过将数据用哈希函数分至16个小文件,每份独立计数后选出频次最高的数,最终比对得出结果。这种方法有效解决大数据下的内存限制问题,并可应用于更广泛的场景。欢迎关注我的公众号“软件求生”,获取更多技术分享!
解读阿里云搜索开发工作台如何快速搭建AI语义搜索及RAG链路
本文介绍阿里云搜索开发工作台如何通过内置数据处理、查询分析、排序、效果测评、大模型等服务,结合阿里云搜索引擎及开源引擎,灵活打造AI语义搜索及RAG链路。
推荐:如何批量根据PDF文件名批量查找PDF文件,复制到指定地方保存,通过文件名批量复制文件,按照文件名批量复制文件,根据文件名批量提取文件
该文介绍了一个批量查找PDF文件(不限于找PDF)的工具,用于在多级文件夹中快速查找并复制特定文件。通过下载提供的软件,用户可以加载PDF库,输入文件名列表,设置操作参数(如保存路径、复制或删除)及搜索模式。软件能高效执行,例如在1.1秒内完成对数千文件中的37个目标文件的复制,显著提升了工作效率,避免了手动逐个查找和复制的繁琐。
【网络安全】新的恶意软件:无文件恶意软件GhostHook正在广泛传播
GhostHook v1.0,一款由Native-One黑客组织开发的无文件浏览器恶意软件,正在网络犯罪论坛快速扩散,对多平台和浏览器构成威胁。这款恶意软件兼容Windows、Android、Linux和macOS,以及Google Chrome、Firefox、Opera和Edge等浏览器。它通过伪装的URL在社交论坛、邮件、即时消息和QR码中传播。无文件恶意软件利用内存驻留、系统工具和隐蔽性高的特点逃避检测,强调了对先进安全策略如EDR系统、网络监控和用户安全教育的需求。
OpenIM Bot: 用LLM构建企业专属的智能客服
OpenIM Bot 通过结合LLM和RAG技术,构建企业专属的智能客服系统。该系统通过优化向量存储、混合检索和查询分析,解决了LLM的幻觉、新鲜度、token长度和数据安全问题,提升了用户体验。向量存储和预处理步骤确保文档高质量,而混合检索结合文本和语义搜索,增强了检索结果的准确性。通过迭代优化,OpenIM Bot 提供了高效、智能的支持服务,减轻了支持团队的负担,提升了问题解决效率。
springsecurity和jwt区别
Spring Security是全面的安全框架,适用于多层认证授权的Web应用,提供丰富的认证授权功能和灵活配置。JWT则是轻量级的认证授权机制,基于JSON标准,常用于API调用中的身份验证。Spring Security侧重于复杂的权限管理,而JWT则以简洁高效著称。两者在使用时,Spring Security涉及用户认证授权和定制身份验证策略,JWT则涉及生成和匹配认证令牌。选择哪个取决于具体需求和应用场景。
linux必学的60个命令
Linux是强大操作系统,提供众多命令行工具,如安装登录(login, shutdown, install)、文件处理(file, mkdir, grep)和系统管理(df, top, kill)。此外,还包括网络操作(ifconfig, ping, telnet)和安全相关(passwd, su, chmod)命令。了解这些基础命令对于有效管理Linux系统至关重要。详细信息和特定用法可能因版本差异而变化,建议查阅相关文档。
linux必学的60个命令
Linux是一个功能强大的操作系统,提供了许多常用的命令行工具,用于管理文件、目录、进程、网络和系统配置等。以下是Linux必学的60个命令的概览,但请注意,这里可能无法列出所有命令的完整语法和选项,仅作为参考
【技术解析 | 实践】部署Kubernetes模式的Havenask集群
本次分享内容为havenask的kubernetes模式部署,由下面2个部分组成(部署Kubernetes模式Havenask集群、 Kubernetes模式相关问题排查),希望可以帮助大家更好了解和使用Havenask。
【一文看懂】Havenask单机模式创建
本次分享内容为Havenask单机模式,由下面3个部分组成(Hape工具介绍、创建单机版Havenask、Hape问题排查),希望可以帮助大家更好了解和使用Havenask。
【一文看懂】Havenask创建表
本次分享内容为Havenask的创建表,共3个部分组成(直写表与全量表、 创建直写表、创建全量表),希望可以帮助大家更好了解和使用Havenask。
【一文解读】阿里自研开源核心搜索引擎 Havenask简介及发展历史
本次分享内容为Havenask的简介及发展历史,由下面五个部分组成(Havenask整体介绍、名词解释、架构、代码结构、编译与部署),希望可以帮助大家更好了解和使用Havenask。
【技术解析 | 实践】Havenask-UDF定制
本节分享 Havenask UDF定制相关的内容,共包含3个部分,分关于 Havenask 的 UDF 相关的介绍、自定义 UDF 的开发及配置方法的介绍,最后将进行 UDF 定制的实际操作演示。
【深入浅出】阿里自研开源搜索引擎Havenask集群扩备份
本次分享内容为Havenask的集群扩备份,共2个部分组成(集群备份简介、 集群备份实践),希望可以帮助大家更好了解和使用Havenask。
【技术解析 | 实践】Havenask文本索引
本次分享内容为Havenask的文本索引,本次课程主要分为两部分内容,首先简要介绍倒排索引的数据结构和文本索引的特性,然后进行对文本索引配置不同分析器的实践,希望通过分享帮助大家更好了解和使用Havenask。
【一文看懂】使用hape部署分布式版Havenask
本次分享内容为使用hape部署分布式版Havenask,共2个部分组成(部署分布式版Havenask集群、 分布式相关问题排查),希望可以帮助大家更好了解和使用Havenask。
【Havenask实践篇】完整的性能测试
Havenask是阿里巴巴智能引擎事业部自研的开源高性能搜索引擎,深度支持了包括淘宝、天猫、菜鸟、高德、饿了么在内几乎整个阿里的搜索业务。性能测试的目的在于评估搜索引擎在各种负载和条件下的响应速度、稳定性。通过模拟不同的用户行为和查询模式,我们可以揭示潜在的瓶颈、优化索引策略、调整系统配置,并确保Havenask在用户数量激增或数据量剧增时仍能保持稳定运行。本文举例对Havenask进行召回性能测试的一个简单场景,在搭建好Havenask服务并写入数据后,使用wrk对Havenask进行压测,查看QPS和查询耗时等性能指标。
阿里云OpenSearch RAG混合检索Embedding模型荣获C-MTEB榜单第一
阿里云OpenSearch引擎通过Dense和Sparse混合检索技术,在中文Embedding模型C-MTEB榜单上拿到第一名,超越Baichuan和众多开源模型,尤其在Retrieval任务上大幅提升。
【Havenask实践篇】搭建文本检索服务
Havenask是阿里巴巴智能引擎事业部自研的开源高性能搜索引擎,深度支持了包括淘宝、天猫、菜鸟、高德、饿了么在内几乎整个阿里的搜索业务。本文举例数据库检索加速的一个简单场景,使用Havenask对数据库的文本字段建立倒排索引,通过倒排检索列提高检索性能,缩短检索耗时。
【一文读懂】基于Havenask向量检索+大模型,构建可靠的智能问答服务
Havenask是阿里巴巴智能引擎事业部自研的开源高性能搜索引擎,深度支持了包括淘宝、天猫、菜鸟、高德、饿了么在内的几乎整个阿里的搜索业务。本文针对性介绍了Havenask作为一款高性能的召回搜索引擎,应用在向量检索和LLM智能问答场景的解决方案和核心优势。通过Havenask向量检索+大模型可以构建可靠的垂直领域的智能问答方案,同时快速在业务场景中进行实践及应用。
【技术解析 | 实践】Havenask分析器
本次分享内容为Havenask的分析器,本次课程主要分为3部分内容(分析器介绍、解释分析器主要配置、实战演示),希望本次通过分享帮助大家更好了解和使用Havenask。
【技术解析 | 实践】Havenask问题排查
本次分享内容为Havenask的问题排查,由下面4个部分组成(Hape运维脚本问题、集群相关问题、表相关问题、数据写入与查询问题),希望可以帮助大家更好了解和使用Havenask。
【深入浅出】阿里自研开源搜索引擎Havenask日志查询
本次分享内容为Havenask的日志查询,文章包含了具体查询步骤和举例、实操演示,希望可以帮助大家更好的使用Havenask。
【深入浅出】阿里自研开源搜索引擎Havenask变更表结构
本文介绍了Havenask的表结构变更,包括表结构简介、全量构建流程和变更表结构三个部分。表结构由schema配置,字段类型包括INT、FLOAT、STRING等,索引有倒排、正排和摘要索引。全量表变更会触发全量构建,完成后自动切换,但直写表不支持直接变更。变更过程涉及使用hape命令更新schema并触发全量build。最后还有全量构建的流程图和具体操作步骤。
【深入浅出】阿里自研开源搜索引擎Havenask集群扩分片
本次分享内容为Havenask的集群扩分片,共2个部分组成( 集群扩分片简介、 集群扩分片实践),希望可以帮助大家更好了解和使用Havenask。
【前沿技术】 阿里开源搜索引擎Havenask的消息系统
Havenask是阿里巴巴智能引擎事业部自研的开源高性能搜索引擎,深度支持了包括淘宝、天猫、菜鸟、高德、饿了么在内几乎整个阿里的搜索业务。本文针对性介绍了Havenask的消息系统--Swift,它是一个设计用于处理大规模的数据流和实时消息传递的高性能、可靠的消息系统。
阿里云向量检索服务:重塑大数据检索的未来
阿里云向量检索服务是一款强大且易于使用的云服务产品,专为大数据检索而设计。通过深度学习模型和高效的索引结构,该服务提供了快速、准确的检索能力,适用于多种业务场景。在评测中,我们对其功能、性能和业务场景适配性进行了全面评估,认为其具有出色的性能和良好的业务场景适配性。未来,阿里云向量检索服务有望持续发展和创新,拓展更多应用领域,为用户带来更加卓越的体验。