对接开源大模型应用开发平台最佳实践

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
OpenSearch LLM智能问答版免费试用套餐,存储1GB首月+计算资源100CU
简介: 本文介绍如何使用OpenSearch LLM智能问答版对接大模型应用开发平台构建RAG系统。

本文以Dify为例介绍如何使用OpenSearch LLM智能问答版对接大模型应用开发平台构建RAG系统。


背景

随着AIGC技术日新月异的发展,LLM应用也在持续迭代。基于LLM、Agent框架、工作流编排能力等,可以搭建不同场景下丰富的应用服务。其中,检索增强生成(RAG)系统已经成为企业知识库、智能客服、电商导购等场景的核心环节。

OpenSearch LLM智能问答版内置数据解析与处理、切片、向量化、文本&向量检索、多模态LLM等模型和功能。本文将介绍如何使用OpenSearch LLM智能问答版对接大模型应用开发平台构建RAG系统。

大模型应用平台

在大模型行业中有越来越多的应用框架、开发平台,比如阿里云百炼、Dify等。开发者可以基于这些框架、平台快速搭建业务应用,RAG系统也是其中的常见环节。因此,大模型应用开发平台通常会内置RAG系统。


阿里云百炼:


Dify:


然而,RAG系统的准确性与搜索效果息息相关,应用开发平台经常会面临以下问题:

1、易用性差:对知识库文档格式、数量、大小等有各种各样的限制,开发者需要进行复杂的数据预处理,或无法满足实际应用的需求。

2、专业性差:大多是黑盒系统,开发者难以针对核心链路进行定制化调优和扩展,导致整体应用效果差。

3、企业级能力弱:不支持企业级权限隔离、数据快速导入/更新等能力,难以落地到实际生产应用中。

针对上述问题,可以使用OpenSearch LLM智能问答版作为RAG系统,应用到工作流程中,快速搭建企业级应用。目前OpenSearch已支持对接百炼中的模型,从而丰富LLM选型,实现定制级RAG效果,具体使用方式可参考:LLM管理

此外,OpenSearch支持丰富的调用、鉴权机制,灵活对接百炼、Dify等应用开发平台。

下面将以Dify为例,介绍对接开源应用平台的最佳实践。

整体架构

开发者预先将知识库导入OpenSearch,并用工作流处理后的对话请求访问OpenSearch中的RAG系统。OpenSearch会基于知识库、LLM,返回对话结果、参考链接、参考图片。开发者再根据业务需求,通过工作流处理结果,并最终输出给终端用户。

在OpenSearch LLM智能问答版中搭建RAG系统

1.搭建RAG系统

OpenSearch LLM智能问答版是一站式RAG产品,可分钟级搭建RAG系统,并可以在控制台进行可视化模型选择、Prompt定制、效果调优等。详情请参见通过控制台实现企业知识库问答

2.创建并获取API Key

创建并获取公网API域名、API Key并妥善保存,详情请参见管理API Key

在应用平台中搭建业务应用

Step 1:在大模型应用平台中创建工作流

基础RAG工作流包含四个环节:

开始:获取用户输入的对话内容。

OpenSearch LLM智能问答版(HTTP请求):将对话内容输入OpenSearch,并基于RAG系统返回输出结果。

解析输出结果(代码执行):解析结果中的对话内容。

返回答案:向用户返回最终结果。

Step 2:使用HTTP请求访问OpenSearch RAG系统

鉴权API-Key:

  • 鉴权类型:API-Key
  • API鉴权类型:Bearer
  • API key:OpenSearch LLM智能问答版中获取的API Key。

URL地址:OpenSearch LLM智能问答版中获取的公网API域名 + OpenSearch接口地址(参考URL:v3/openapi/apps/[app_name]/actions/knowledge-search)

BODY:选择JSON格式,具体的内容和参数可参考:SearchKnowledge-问答文档查询

Step 3:解析输出结果

OpenSearch的接口返回结果为JSON格式,包含对话结果、参考链接、参考图片等。开发者可以使用代码执行解析输出结果,按需获取返回结果。

只获取输出结果的参考代码:

def main(body: str) -> str:
    import json
    dat = json.loads(body)
    return {
        'result': [ans['answer'] for ans in dat['result']['data']][0]
    }

效果预览

在此基础上,可以配合搭建其他工作流,构建丰富的业务应用流。

例如,以下是一个基于OpenSearch、Qwen模型构建的智能对话助手。

首先,会判断用户对话的意图并进行分类,分为售后问题、产品使用问题和闲聊。

针对售后问题、产品使用问题,分别访问OpenSearch中的相应知识库,使用RAG系统进行回复。

对于闲聊类问题,访问Qwen模型与用户进行闲聊对话,解决通用类问题。

除使用一站式RAG产品搭建工作流外,还可使用阿里云AI搜索开发工作台,通过工作台提供的文档解析、向量化、搜索、重排等原子化能力,自定义dify工具,从而快速定制优化RAG系统的各个环节。

目录
打赏
0
9
8
3
1593
分享
相关文章
HiFox AI:一站式 AI 应用平台,多模型快速接入,自由选用
HiFox AI 是一站式AI应用平台,整合了30多个主流AI模型,提供文本生成、对话交流、图片生成等多种应用场景。平台内置1000+预构建AI应用,支持无代码搭建个性化应用和复杂工作流,帮助用户高效处理重复任务,显著提升工作效率。无论是普通用户还是技术专家,都能在HiFox AI上找到适合自己的解决方案,实现“人人都能使用AI”的愿景。
云端问道8期方案教学-基于Serverless计算快速构建AI应用开发
本文介绍了基于Serverless计算快速构建AI应用开发的技术和实践。内容涵盖四个方面:1) Serverless技术价值,包括其发展趋势和优势;2) Serverless函数计算与AI的结合,探讨AIGC应用场景及企业面临的挑战;3) Serverless函数计算AIGC应用方案,提供一键部署、模型托管等功能;4) 业务初期如何低门槛使用,介绍新用户免费额度和优惠活动。通过这些内容,帮助企业和开发者更高效地利用Serverless架构进行AI应用开发。
DataWorks深度技术解读:构建开放的云原生数据开发平台
Dateworks是一款阿里云推出的云原生数据处理产品,旨在解决数据治理和数仓管理中的挑战。它强调数据的准确性与一致性,确保商业决策的有效性。然而,严格的治理模式限制了开发者的灵活性,尤其是在面对多模态数据和AI应用时。为应对这些挑战,Dateworks进行了重大革新,包括云原生化、开放性增强及面向开发者的改进。通过Kubernetes作为资源底座,Dateworks实现了更灵活的任务调度和容器化支持,连接更多云产品,并提供开源Flowspec和Open API,提升用户体验。
阿里低代码引擎LowCodeEngine正式开源
低代码引擎是一款为低代码平台开发者提供的,具备强大扩展能力的低代码研发框架。由阿里巴巴前端委员会、钉钉宜搭联合出品。使用者只需要基于低代码引擎便可以快速定制符合自己业务需求的低代码平台。
阿里低代码引擎LowCodeEngine正式开源
深入探索:主流低代码开发平台的应用场景及开发流程
低代码虽然强大,但并非万能。假如一家企业引进了低代码,就让其开发团队“下课”,把开发控制权完全交给业务团队,那他们在达成目标上就会困难重重。但对于某些特定的场景,低代码绝对是一项强大的技术。它能迅速补齐能力短板,为部分用户群体的核心软件构建创造新的可能,还能让业务团队按需自助搭建应用。
阿里云最新产品手册——阿里云核心产品——机器学习平台PAI——三大云原生功能模块——PAI-EAS
阿里云最新产品手册——阿里云核心产品——机器学习平台PAI——三大云原生功能模块——PAI-EAS自制脑图
340 1
阿里云最新产品手册——阿里云核心产品——机器学习平台PAI——三大云原生功能模块——PAI产品模块
阿里云最新产品手册——阿里云核心产品——机器学习平台PAI——三大云原生功能模块——PAI产品模块自制脑图
275 1
阿里云最新产品手册——阿里云核心产品——机器学习平台PAI——三大云原生功能模块——PAI DSW
阿里云最新产品手册——阿里云核心产品——机器学习平台PAI——三大云原生功能模块——PAI DSW自制脑图
256 2
阿里云最新产品手册——阿里云核心产品——机器学习平台PAI——三大云原生功能模块——PAI-DLC
阿里云最新产品手册——阿里云核心产品——机器学习平台PAI——三大云原生功能模块——PAI-DLC自制脑图
259 1