智能搜索推荐
智能推荐(Artificial Intelligence Recommendation,简称AIRec)基于阿里巴巴大数据和人工智能技术,以及在电商、内容、直播、社交等领域的业务沉淀,为企业开发者提供场景化推荐服务、全链路推荐系统开发平台、工程引擎组件库等多种形式服务,助力在线业务增长。
一天造出10亿个淘宝首页,阿里算法工程师如何实现?
双十一手淘首页个性化场景是推荐生态链路中最大的场景之一,在手淘APP承载了整体页面的流量第一入口,对用户流量的整体承接、分发、调控,以及用户兴趣的深度探索与发现上起着至关重要的作用。
AI小编问世!阿里智能写手核心技术首次公开!
内容化已经成为淘宝近几年发展的重点,我们可以在手机淘宝APP(以下简称手淘)上看到很多不同的内容形式和内容型导购产品,例如,“有好货”中的以单个商品为主体的富文本内容,“必买清单”中的清单,即围绕一个主题来组织文本和商品的长图文型内容,等等。
DCN(Deep & Cross Network)模型在手淘分类地图CTR预估上的应用
一:背景 分类地图业务是指手淘首页首屏的"分类"入口,目前整个产品已经有300万左右日活跃用户和6000多万pv, 目前产品业务点较多,本文重点介绍点击品类词后的商品二跳页模块,具体如下图所示:当用户点击相应的品类词图片后,则会进入该类目下的商品集合。
Graphical Model在收藏夹作弊行为识别上的应用
Graphical Model通常应用在问题本身带有多个相互联系的变量的场景,并提供了一种基于图的表达方式让你去建模这些联系从而挖掘潜在的因果关系。在本文中,我们创新性地将概率图模型应用到了淘宝平台收藏作弊行为检测的任务中,取得了远超传统分类模型的结果(Top1%记录中召回60%的作弊行为)。
heracles压测平台介绍
heracles压测平台介绍 Heracles音译为赫拉克勒斯或意译为大力神.希腊语:Ηρακλής,Hēraklēs,引申自Hēra“赫拉”和kleos“荣耀”,也即赫拉的荣耀 背景 搜索和推荐的应用越来越多的时候,我们常常面临着下面几个问题: 如何能随时的了解每个应用的最大容量,当前资源可支.
Hawkeye:TopN慢query的获取与优化
之前的文章介绍了Hawkeye的底层分析系统(待补充文章),其中讲到了基于Blink的Batch任务实现方法,前段时间在优化慢query查询的过程中开发了应用TopN慢query获取的分析任务,其中用到的分析方法适用于其他类似求TopN的问题中。
Hawkeye:助力TISPLUS实现数据化运营
背景 TISPLUS平台的数据分析能力主要由hawkeye提供,但是之前存在如下几个问题:1.数据化场景的功能没有凸显,隐藏较深;2.产品形态设计单一,没有一个较好的产品闭环引导用户关注数据化的结果;3.数据分析内容简单,覆盖面不足,远远达不到让用户数据化运营服务的目标;4.重点关注了数据分析的结果,但缺少衡量数据分析结果为搜索服务本身带来的价值大小。
阿里巴巴搜索无状态服务的秒级弹性调度
目前阿里巴巴搜索的分布式服务一般都是基于Hippo+Carbon来调度的,包括部署、扩缩容、名字服务注册。如下图: ,可以让运算飞起。。。
OpenSearch:轻松构建大数据搜索服务
随着互联网数据规模的爆炸式增长,如何从海量的历史、实时 数据中快速获取有用信息,变得越来越具有挑战性。搜索是获取信息最高效的途径之一,因此也是各类网站、应用的基础标配功能。开发者想在自己的产品中实现搜索功能一般都是基于某个开源搜索系统(如ElasticSearch、Solr、Sphinx
Drill官网文档翻译六:存储插件的注册
我们可以通过存储插件连接到本地文件系统,Hive,HBase,或是其他的数据源。在Drill的web界面的存储插件配置tab,你可以查看修改这些插件的配置。如果不支持HTTPS(默认就没有),你可以访问HTTP://{IP}:8047/storage 来查看和配置存储插件。可以用IP,也可以用ho.
Drill官网文档翻译五:连接到数据源
存储插件是Drill中,连接到数据源的模块。一个存储插件通常会优化Drill查询的执行,提供数据的定位,命名空间下的配置和读数据要用到的格式。Drill已经内置了一些存储插件,你只需要根据你的环境配置一下就可以使用了。借助存储插件,你可以连接到各种数据源,像数据库,本地或是分布式的文件,或是Hiv.
Drill官网文档翻译四 Drill的性能
(翻译自apache drill 官网。) Drill是从地基开始就奔向高性能和大数据集去设计的,下面列出来的是Drill能够做到高性能的核心要点。 分布式的引擎 Drill提供了一个强大的分布式引擎来处理查询。用户可以从集群的任何一个节点是提交查询。你可以添加新的节点到集群中,以为了支持更多
Drill官网文档翻译三:Drill的核心模块
(翻译自Drill官网) 核心模块 下图描述了一个drillbit里的各个组件 下面列出drillbit里的关键组件: RPC endpoint Drill开发了一种基于Probobuf的损耗非常低的RPC通信协议来跟客户端打交道。另外,客户端程序也可以使用C++或是JAVA api层来跟
Drill官网文档翻译二:Drill查询的执行
(翻译自Drill官网) 当您提交Drill查询的时候,客户端或应用程序会把查询以SQL语句的形式发送到Drill集群的一个Drillbit。Drillbit是在每个在线的Drill节点上运行的进程,它负责协调,规划和执行查询,并按照最大限度地实现数据本地化的原则在集群中分发查询。 下图描述了客
Drill官网文档翻译一 基本架构
(翻译自apache drill 官网) 架构总览 Apache drill是在大规模数据集场景下,可以低延迟地进行结构和半结构化/嵌套数据结构查询的一个分布式查询引擎。受到谷歌公司的Dremel的启发,Drill被设计出来以支持几千个节点和PB级别的数据规模下,支持交互响应级别的商务智
技术论文:电子商务中基于生命阶段的推荐(发表于 ACM KDD2015 )
ACM SIGKDD 国际会议(简称 KDD)是数据挖掘研究领域的顶级盛会,它每年能收到上千篇来自国际知名大学和研究机构的学术论文投稿,这其中仅有一小部分优秀论文可以被接收。2015年5月18日,KDD组委会发布工业和政府相关方向论文的录用消息,阿里巴巴集团搜索事业部推荐团队投稿的论文被录用,表
基于动态混合高斯模型的商品价格模型算法
1. 背景 作为电子商务网站,淘宝网上的每个商品都有一个价格,该价格从一个很重要的维度上反应出一个商品的品质。但是由于该价格是由第三方卖家自己确定的,因此存在一定的随机性。一个价格过低的商品,其假货的可能性往往较大,比如500元的劳力士手表,或者商品的质量存在问题;同时一个价格过高的商品,
拍立淘---试妆魔镜 OpenGL ES 2.0 框架及性能优化
手机淘宝(搜索框->摄像头->试妆魔镜): 最初的设计原型及性能问题: 单线程模型,优先级过低:从Camera获取到CMSampleBufferRef YUV图像帧,拷贝像素数据到内存(多了一次拷贝内存的开销)进行美妆渲染以及一些其他的检测计算,导致的render线程性能消耗过多,CPU负
海量数据实时计算利器Tec
引子 在刚刚过去的2015年双11大促中,搜索事业部的实时计算和在线学习系统Pora经受住了前所未有的双11巨量用户行为消息的冲击,在流入实时消息量持续超过300w/s,甚至峰值飙升至501w/s的压力下始终保持了端到端秒级实时效果,助力相关的搜索和推荐实时业务取得了很好的效果。 Pora如何能
Hadoop summit 2015 实时计算
有幸参加了6月9号到6月11号在圣何塞举办Hadoop summit 2015,主要关注了实时计算相关的topic。 本次参会的主要感受是:实时处理成为各个公司的标配,OLAP是基本需求。 下面我主要分享如下三个议题: 实时计算框架(主要是storm,spark主题太少,涉及实时计算的基本没有
DII—算法服务利器
随着集团内各种离线处理、实时反馈、在线学习和分析系统的发展壮大,为算法同学使用数据提供了更多的手段和玩法,能够从数据中挖掘出更多的宝藏。但是仅仅产出数据是不够的,他们需要将数据结合算法在线服务的方式应用到业务中去,才能真正产生价值。从搜索事业部的现状来看,算法的作用方式主要有两种,一种是嵌入引擎内.