Java程序员必学:JVM架构完全解读
Java 虚拟机(JVM)是 Java 编程的核心,深入理解其架构对开发者意义重大。本文详细解读 JVM 架构,涵盖类加载器子系统、运行时数据区等核心组件,剖析类加载机制,包括加载阶段、双亲委派模型等内容。阐述内存管理原理,介绍垃圾回收算法与常见回收器,并结合案例讲解调优策略。还分享 JVM 性能瓶颈识别与调优方法,分析 Java 语言特性对性能的影响,给出数据结构选择、I/O 操作及并发同步处理的优化技巧,同时探讨 JVM 安全模型与错误处理机制,助力开发者提升编程能力与程序性能。
通过Milvus和Langchain快速构建基于百炼大模型的LLM问答系统
阿里云向量检索服务Milvus版是一款全托管向量检索引擎,并确保与开源Milvus的完全兼容性,支持无缝迁移。它在开源版本的基础上增强了可扩展性,能提供大规模AI向量数据的相似性检索服务。凭借其开箱即用的特性、灵活的扩展能力和全链路监控告警,Milvus云服务成为多样化AI应用场景的理想选择,包括多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等。您还可以利用开源的Attu工具进行可视化操作,进一步促进应用的快速开发和部署。
2025年大模型就业:核心技术趋势、技能要求与职业发展全景解析
随着大语言模型(Large Language Models, LLMs)的技术飞速迭代,人工智能领域正经历从通用对话工具向高度智能化、任务导向的智能体(Agent)系统的深刻转型。到2025年4月,企业对掌握LLM相关技术的专业人才需求持续高涨,核心能力聚焦于检索增强生成(RAG)、智能体任务自动化、模型对齐优化以及多模态融合。本文将全面剖析2025年大模型就业市场的技术演进路径、核心技能要求、行业应用场景、推荐实践项目以及职业发展建议,旨在为从业者提供详尽的职业规划指南,帮助其精准把握行业机遇。
浏览器自动化检测对抗:修改navigator.webdriver属性的底层实现
本文介绍了如何构建一个反检测爬虫以爬取Amazon商品信息。通过使用`undetected-chromedriver`规避自动化检测,修改`navigator.webdriver`属性隐藏痕迹,并结合代理、Cookie和User-Agent技术,实现稳定的数据采集。代码包含浏览器配置、无痕设置、关键词搜索及数据提取等功能,同时提供常见问题解决方法,助你高效应对反爬策略。
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
生成对抗网络(GAN)的训练效果高度依赖于损失函数的选择。本文介绍了经典GAN损失函数理论,并用PyTorch实现多种变体,包括原始GAN、LS-GAN、WGAN及WGAN-GP等。通过分析其原理与优劣,如LS-GAN提升训练稳定性、WGAN-GP改善图像质量,展示了不同场景下损失函数的设计思路。代码实现覆盖生成器与判别器的核心逻辑,为实际应用提供了重要参考。未来可探索组合优化与自适应设计以提升性能。
【AI落地应用实战】大模型加速器2.0:基于 ChatDoc + TextIn ParseX+ACGE的RAG知识库问答系统
本文探讨了私有知识库问答系统的难点及解决方案,重点分析了企业知识管理中的痛点,如信息孤岛、知识传承依赖个人经验等问题。同时,介绍了IntFinQ这款知识管理工具的核心特点和实践体验,包括智能问答、深度概括与多维数据分析等功能。文章还详细描述了IntFinQ的本地化部署过程,展示了其从文档解析到知识应用的完整技术闭环,特别是自研TextIn ParseX引擎和ACGE模型的优势。最后总结了该工具对企业和开发者的价值,强调其在提升知识管理效率方面的潜力。
信息检索系统评估指标的层级分析:从单点精确度到整体性能度量
本文深入探讨了信息检索系统(如搜索引擎)的评估机制,从用户行为特征出发,设计了一系列量化指标以衡量搜索结果的相关性和有效性。核心内容包括精确度(Precision)、Precision@K(聚焦前K个结果)、Average Precision@K(考虑位置权重)以及MAP@K(系统整体性能评估)。通过实际案例分析,展示了如何用这些指标评估搜索系统的质量,并强调高质量系统需在多维度上表现优异,以契合用户真实需求和行为模式。文章为优化信息检索系统提供了科学指导框架。
淘宝图片搜索商品列表API接口全攻略
淘宝图片搜索API(拍立淘)通过上传图片快速检索淘宝/天猫相似商品,支持标题、价格、销量等信息返回。核心功能包括以图搜图、商品筛选和分页查询,具备高效性、准确性和多语言支持。开发者需注册账号、创建应用并申请权限后调用接口,适用于电商平台、比价工具等场景。
【赵渝强老师】史上最详细:Hadoop HDFS的体系架构
HDFS(Hadoop分布式文件系统)由三个核心组件构成:NameNode、DataNode和SecondaryNameNode。NameNode负责管理文件系统的命名空间和客户端请求,维护元数据文件fsimage和edits;DataNode存储实际的数据块,默认大小为128MB;SecondaryNameNode定期合并edits日志到fsimage中,但不作为NameNode的热备份。通过这些组件的协同工作,HDFS实现了高效、可靠的大规模数据存储与管理。
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
本教程展示如何使用Flink CDC YAML快速构建从MySQL到Kafka的流式数据集成作业,涵盖整库同步和表结构变更同步。无需编写Java/Scala代码或安装IDE,所有操作在Flink CDC CLI中完成。首先准备Flink Standalone集群和Docker环境(包括MySQL、Kafka和Zookeeper),然后通过配置YAML文件提交任务,实现数据同步。教程还介绍了路由变更、写入多个分区、输出格式设置及上游表名到下游Topic的映射等功能,并提供详细的命令和示例。最后,包含环境清理步骤以确保资源释放。
使用PHP接入纯真IP库:实现IP地址地理位置查询
本文介绍了如何使用PHP接入纯真IP库(QQWry),实现IP地址的地理位置查询。纯真IP库是一个轻量级的IP数据库,数据格式简单,查询速度快,适合Web应用。首先,下载并放置`QQWry.dat`文件到项目目录。接着,通过编写PHP类解析该文件,实现IP查询功能。最后,提供了一个完整的案例演示,展示如何查询IP地址对应的国家和地区信息。该工具适用于用户地理位置分析、访问日志分析和风控系统等场景,具有轻量级、查询速度快、数据更新方便等优点。
小米基于 Apache Paimon 的流式湖仓实践
本文整理自Flink Forward Asia 2024流式湖仓专场分享,由计算平台软件研发工程师钟宇江主讲。内容涵盖三部分:1)背景介绍,分析当前实时湖仓架构(如Flink + Talos + Iceberg)的痛点,包括高成本、复杂性和存储冗余;2)基于Paimon构建近实时数据湖仓,介绍其LSM存储结构及应用场景,如Partial-Update和Streaming Upsert,显著降低计算和存储成本,简化架构;3)未来展望,探讨Paimon在流计算中的进一步应用及自动化维护服务的建设。
小红书笔记评论数据接口(小红书 API 系列)
小红书凭借庞大的用户群体和丰富的内容生态,成为重要的数据来源。其笔记评论数据对企业了解市场需求、优化产品策略等具有极高价值。为高效、合法获取数据,可使用小红书笔记评论数据接口。该接口通过HTTP请求获取指定笔记的评论内容、时间、昵称等信息,返回JSON格式数据。开发者可利用Python的requests库发送GET请求并处理响应,实现批量收集评论数据,支持舆情监测、竞品分析等业务场景。
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
本文整理自鹰角网络大数据开发工程师朱正军在Flink Forward Asia 2024上的分享,主要涵盖四个方面:鹰角数据平台架构、数据湖选型、湖仓一体建设及未来展望。文章详细介绍了鹰角如何构建基于Paimon的数据湖,解决了Hudi入湖的痛点,并通过Trino引擎和Ranger权限管理实现高效的数据查询与管控。此外,还探讨了湖仓一体平台的落地效果及未来技术发展方向,包括Trino与Paimon的集成增强、StarRocks的应用以及Paimon全面替换Hive的计划。
MOIRAI-MOE: 基于混合专家系统的大规模时间序列预测模型
MOIRAI 是 Salesforce 开发的早期时间序列基础模型,凭借出色的基准测试性能和开源的大规模预训练数据集 LOTSA 获得广泛关注。最新升级版本 MOIRAI-MOE 引入混合专家模型(Mixture of Experts, MOE),在模型性能上实现显著提升。本文深入分析 MOIRAI-MOE 的技术架构与实现机制,对比其与原版 MOIRAI 的差异,探讨 MOE 在提升预测准确率和处理频率变化问题上的作用,并展示其在分布内和零样本预测中的优异表现。实验结果显示,MOIRAI-MOE 以更少的激活参数量实现了更高的性能提升,成为时间序列预测领域的重要里程碑。
CoAT: 基于蒙特卡洛树搜索和关联记忆的大模型推理能力优化框架
研究者提出了一种新的关联思维链(CoAT)方法,通过整合蒙特卡洛树搜索(MCTS)和关联记忆机制,提升大语言模型(LLMs)的推理能力。CoAT框架优化了MCTS算法,增强了结构化推理和动态知识整合,适用于复杂推理、多跳问答和代码生成等任务。实验结果显示,CoAT在精确匹配和F1分数上表现优异,超越了多个基线模型。然而,该方法在计算资源消耗和实时推理速度方面仍有改进空间。
记忆层增强的 Transformer 架构:通过可训练键值存储提升 LLM 性能的创新方法
Meta研究团队开发的记忆层技术通过替换Transformer中的前馈网络(FFN),显著提升了大语言模型的性能。记忆层使用可训练的固定键值对,规模达百万级别,仅计算最相似的前k个键值,优化了计算效率。实验显示,记忆层使模型在事实准确性上提升超100%,且在代码生成和通用知识领域表现优异,媲美4倍计算资源训练的传统模型。这一创新对下一代AI架构的发展具有重要意义。
拍立淘API是基于图像识别技术的服务接口,支持淘宝、1688和义乌购平台。
拍立淘API是基于图像识别技术的服务接口,支持淘宝、1688和义乌购平台。用户上传图片后,系统能快速匹配相似商品,提供精准搜索结果,并根据用户历史推荐个性化商品,简化购物流程。开发者需注册账号并获取API Key,授权权限后调用接口,返回商品详细信息如ID、标题、价格等。使用时需遵守频率限制,确保图片质量,保障数据安全。
基于阿里云AI购物助手解决方案的深度评测
阿里云推出的AI购物助手解决方案,采用模块化架构,涵盖智能对话引擎、商品知识图谱和个性化推荐引擎。评测显示其在智能咨询问答、个性化推荐和多模态交互方面表现出色,准确率高且响应迅速。改进建议包括提升复杂问题理解、简化推荐过程及优化话术。总体评价认为该方案技术先进,应用效果好,能显著提升电商购物体验并降低运营成本。
OpenSearch & AI搜索开放平台,实现0代码图片搜索!
本文主要介绍了如何利用阿里云的 OpenSearch 和 AI 搜索开放平台来构建一个无需编写代码就能完成的图片搜索功能。
25 个值得关注的检索增强生成 (RAG) 模型和框架
大型语言模型(LLM)如GPT-4在自然语言处理(NLP)领域展现了卓越能力,但也存在知识截止、静态知识库和内存限制等局限。检索增强生成(RAG)通过集成检索机制,允许LLM动态访问和整合外部数据源,提高了生成响应的准确性、相关性和时效性。本文深入探讨了25种先进的RAG变体,每种变体都旨在优化检索和生成过程的特定方面,涵盖成本限制、实时交互和多模态数据集成等问题,展示了RAG在提升NLP能力方面的多功能性和潜力。
数据传输中遇到问题要怎么解决
在数据传输中遇到问题时,可采取多种解决方案:使用可靠协议(如HTTPS、SFTP)、创建冗余备份、数据压缩与加密、错误检测与纠错、优化网络性能、解决数据丢失、降低延迟、提高安全性及解决带宽瓶颈。这些措施有助于确保数据传输的稳定、安全与高效。
使用静态IP时出现“代理检测失败”的原因是什么?
随着数字化时代的加速发展,网络安全与隐私保护成为核心需求,HTTP凭借其独特优势成为新时代热门选择。本文分析了“代理检测失败,请确认代理IP的有效性”这一问题,主要原因包括:代理IP失效、配置错误、网络不稳定、类型不匹配及请求频率过高。解决建议为检查IP有效性、确保正确配置、选择合适代理类型并控制请求频率。希望这能帮助您解决问题!
AI Native平台,跨越AI应用从创新到生产的鸿沟
2024年是AI应用的元年,以大模型为中心的 AI Native 应用大爆发正在从理想变成现实。云计算带来的应用创新潮,经历了虚拟机时代和云原生时代,正在全面拥抱以大模型为核心的 AI Native 阶段,推动大数据与AI的工作流前所未有地紧密结合。领先大模型、高效的AI计算平台和统一的大数据平台是 AI Native 应用广泛落地背后不可获缺的要素。 9月20日,2024云栖大会上,阿里云副总裁、阿里云计算平台事业部负责人汪军华宣布大数据AI平台全面升级,为 AI Native 应用大爆发提供坚实的平台支撑。
Apache Paimon V0.9最新进展
Apache Paimon V0.9 版本即将发布,此版本带来了多项新特性并解决了关键挑战。Paimon自2022年从Flink社区诞生以来迅速成长,已成为Apache顶级项目,并广泛应用于阿里集团内外的多家企业。
MaxCompute操作报错合集之配置mysql数据源querysql模式,同步到MC时遇到报错,该怎么处理
MaxCompute是阿里云提供的大规模离线数据处理服务,用于大数据分析、挖掘和报表生成等场景。在使用MaxCompute进行数据处理时,可能会遇到各种操作报错。以下是一些常见的MaxCompute操作报错及其可能的原因与解决措施的合集。
实时计算 Flink版产品使用问题之使用Spring Boot启动Flink处理任务时,使用Spring Boot的@Scheduled注解进行定时任务调度,出现内存占用过高,该怎么办
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
C++一分钟之-智能指针:unique_ptr与shared_ptr
【6月更文挑战第24天】C++智能指针`unique_ptr`和`shared_ptr`管理内存,防止泄漏。`unique_ptr`独占资源,离开作用域自动释放;`shared_ptr`通过引用计数共享所有权,最后一个副本销毁时释放资源。常见问题包括`unique_ptr`复制、`shared_ptr`循环引用和裸指针转换。避免这些问题需使用移动语义、`weak_ptr`和明智转换裸指针。示例展示了如何使用它们管理资源。正确使用能提升代码安全性和效率。
Java一分钟之-Akka:反应式编程框架
【6月更文挑战第11天】Akka是Java开发者的并发利器,基于Actor模型,通过消息传递实现安全并发。核心组件包括Actor System、Actor、Message和Props。常见问题涉及Actor阻塞、死信与监控、错误消息处理。解决策略包括异步处理、死信监控、未处理消息管理。遵循明确消息契约、细粒度Actor、正确使用并发工具和监控日志等最佳实践,可助你有效避免陷阱,提升系统性能和可用性。开始你的Akka之旅,探索反应式编程新世界。
案例:批量区域识别内容重命名,批量识别扫描PDF区域内容识别重命名,批量识别图片区域内容重命名图片修改图片名字,批量识别图片区域文字并重命名,批量图片部分识别内容重命文件,PDF区域内容提取重命名
该内容介绍了如何使用区域识别重命名软件高效整理图片,例如将图片按时间及内容重命名,适用于简历、单据等识别。文中提供了软件下载链接(百度云盘和腾讯网盘),并列出软件使用的几个关键条件,包括文字清晰、文件名长度限制等。示例展示了银行单据和公司工作单据的识别情况。文章还提及OCR技术在图片文字识别中的应用,强调了识别率、误识率和用户友好性等评估指标。如有类似需求,读者可留言或下载软件测试,并提供图片以获取定制的识别方案。
实时计算 Flink版产品使用合集之如何批量读取Kafka数据
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
实时计算 Flink版产品使用合集之从Oracle数据库同步数据时,checkpoint恢复后无法捕获到任务暂停期间的变更日志,如何处理
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
实时计算 Flink版操作报错之遇到UnsupportedOperationException异常,该如何处理
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
实时计算 Flink版操作报错合集之报错:“Data row is smaller than a column index”如何解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
图神经网络入门示例:使用PyTorch Geometric 进行节点分类
本文介绍了如何使用PyTorch处理同构图数据进行节点分类。首先,数据集来自Facebook Large Page-Page Network,包含22,470个页面,分为四类,具有不同大小的特征向量。为训练神经网络,需创建PyTorch Data对象,涉及读取CSV和JSON文件,处理不一致的特征向量大小并进行归一化。接着,加载边数据以构建图。通过`Data`对象创建同构图,之后数据被分为70%训练集和30%测试集。训练了两种模型:MLP和GCN。GCN在测试集上实现了80%的准确率,优于MLP的46%,展示了利用图信息的优势。
探索文本向量化的新高峰:合合信息acge_text_embedding 模型原创
文本向量化方法包括词袋模型、TF-IDF、词嵌入和预训练模型(如BERT、GPT)。词嵌入如Word2Vec、GloVe和FastText捕捉单词语义,预训练模型则保留上下文信息。C-MTEB是中文文本嵌入评估平台,测试模型在检索、相似性、分类等任务的性能。合合信息的acge_text_embedding模型在C-MTEB中表现优秀,适用于情感分析、文本生成等任务,具有高分类聚类准确性、资源效率和场景适应性。技术突破涉及数据集优化、模型训练策略和持续学习,提供Demo展示如何使用acge模型计算句子相似度。acge_text_embedding是提升文本处理效率和智能化的有力工具。
【AAAI2024】M2SD:通过特征空间预构建策略重塑小样本类增量学习
小样本类增量学习代表了机器学习领域中一个高度挑战性的议题,其核心目标在于能够在仅有限的数据支持下识别新类别,同时保留对已学习类别的认知,而无须重新训练整个模型。这一目标在模型需适应新类别的同时使用有限训练数据的情况下尤为艰巨。针对上述挑战,我们提出了一种创新性策略,称为多重混合自蒸馏。旨在为类增量学习阶段准备一个具有高度可扩展性和包容性的特征空间。
DataWorks常见问题之按tab键没反应如何解决
DataWorks是阿里云提供的一站式大数据开发与管理平台,支持数据集成、数据开发、数据治理等功能;在本汇总中,我们梳理了DataWorks产品在使用过程中经常遇到的问题及解答,以助用户在数据处理和分析工作中提高效率,降低难度。
【多传感器融合】BEVFusion: 激光雷达和摄像头融合框架 NeurIPS 2022
BEVFusion提出一个融合多摄像头和激光雷达数据的框架,可用于3D检测。在自动驾驶领域,通过独立处理并融合摄像头和激光雷达数据,可以显著提升3D对象检测的准确性和稳健性,尤其是在激光雷达可能出现故障的真实场景中。
多GPU训练大型模型:资源分配与优化技巧 | 英伟达将推出面向中国的改良芯片HGX H20、L20 PCIe、L2 PCIe
在人工智能领域,大型模型因其强大的预测能力和泛化性能而备受瞩目。然而,随着模型规模的不断扩大,计算资源和训练时间成为制约其发展的重大挑战。特别是在英伟达禁令之后,中国AI计算行业面临前所未有的困境。为了解决这个问题,英伟达将针对中国市场推出新的AI芯片,以应对美国出口限制。本文将探讨如何在多个GPU上训练大型模型,并分析英伟达禁令对中国AI计算行业的影响。
大语言模型量化方法对比:GPTQ、GGUF、AWQ
在过去的一年里,大型语言模型(llm)有了飞速的发展,在本文中,我们将探讨几种(量化)的方式,除此以外,还会介绍分片及不同的保存和压缩策略。
YOLO实践应用之搭建开发环境(Windows系统、Python 3.8、TensorFlow2.3版本)
基于YOLO进行物体检测、对象识别,先和大家分享如何搭建开发环境,会分为CPU版本、GPU版本的两种开发环境,本文会分别详细地介绍搭建环境的过程。主要使用TensorFlow2.3、opencv-python4.4.0、Pillow、matplotlib 等依赖库。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。