差分隐私机器学习:通过添加噪声让模型更安全,也更智能
本文探讨在敏感数据上应用差分隐私(DP)进行机器学习的挑战与实践。通过模拟DP-SGD算法,在模型训练中注入噪声以保护个人隐私。实验表明,该方法在保持71%准确率和0.79 AUC的同时,具备良好泛化能力,但也带来少数类预测精度下降的问题。研究强调差分隐私应作为模型设计的核心考量,而非事后补救,并提出在参数调优、扰动策略选择和隐私预算管理等方面的优化路径。
CUDA性能优化实战:7个步骤让并行归约算法提升10倍效率
https://avoid.overfit.cn/post/af59d0a6ce474b8fa7a8eafb2117a404
Apache Spark详解
Apache Spark 是一个开源、分布式计算引擎,专为大规模数据处理设计。它以高速、易用和通用为核心目标。通过内存计算、DAG 执行引擎和惰性求值等特性,大幅提升数据处理效率。其核心组件包括 Spark Core、Spark SQL、Spark Streaming、MLlib 和 GraphX,支持批处理、实时流处理、机器学习和图计算。Spark 提供统一编程模型,支持多语言(Scala/Java/Python/R),并拥有强大的 Catalyst 优化器和类型安全的 Dataset API,广泛应用于大数据分析和处理场景。
基于 Flink+Paimon+Hologres 搭建淘天集团湖仓一体数据链路
本文整理自淘天集团高级数据开发工程师朱奥在Flink Forward Asia 2024的分享,围绕实时数仓优化展开。内容涵盖项目背景、核心策略、解决方案、项目价值及未来计划五部分。通过引入Paimon和Hologres技术,解决当前流批存储不统一、实时数据可见性差等痛点,实现流批一体存储与高效近实时数据加工。项目显著提升了数据时效性和开发运维效率,降低了使用门槛与成本,并规划未来在集团内推广湖仓一体架构,探索更多技术创新场景。
淘宝图片搜索API秘籍!轻松获取相似商品数据
淘宝图片搜索API是基于深度学习和计算机视觉技术的图片搜索工具,支持通过上传图片或URL搜索淘宝相似商品。其核心接口如`taobao.image.search`适用于电商购物、商品推荐及竞品分析等场景。该API具备高效性、准确性和易用性,用户只需提供一张图片即可快速获取相似商品,极大提升购物体验与效率。同时,商家也可借此优化商品展示以提高曝光率和销售机会。使用时,用户可通过Python代码调用API,上传图片并获取搜索结果。
MySQL下载安装全攻略!小白也能轻松上手,从此数据库不再难搞!
这是一份详细的MySQL安装与配置教程,适合初学者快速上手。内容涵盖从下载到安装的每一步操作,包括选择版本、设置路径、配置端口及密码等。同时提供基础操作指南,如数据库管理、数据表增删改查、用户权限设置等。还介绍了备份恢复、图形化工具使用和性能优化技巧,帮助用户全面掌握MySQL的使用方法。附带常见问题解决方法,保姆级教学让你无忧入门!
ChronosX: 可使用外生变量的时间序列预测基础模型
时间序列预测中,基础模型虽在单变量任务中表现出色,但引入协变量支持仍面临挑战。Chronos研究团队提出ChronosX架构,通过适配器层有效整合历史与未来协变量信息,适用于任何单变量模型。实验表明,ChronosX显著提升预测性能,尤其在复杂数据集上优势明显。消融研究进一步验证了协变量模块的重要性。尽管需要轻量训练,但其灵活性和通用性为时间序列建模提供了新思路,未来或可通过类似LLM提示机制实现更高效的协变量处理。
鹰角网络:EMR Serverless Spark 在《明日方舟》游戏业务的应用
鹰角网络为应对游戏业务高频活动带来的数据潮汐、资源弹性及稳定性需求,采用阿里云 EMR Serverless Spark 替代原有架构。迁移后实现研发效率提升,支持业务快速发展、计算效率提升,增强SLA保障,稳定性提升,降低运维成本,并支撑全球化数据架构部署。
如何用大模型+RAG 给宠物做一个 AI 健康助手?——阿里云 AI 搜索开放平台
本文分享了如何利用阿里云 AI 搜索开放平台,基于 LLM+RAG 的系统框架,构建“宠物医院AI助手”的实践过程。
演讲实录:中小企业如何快速构建AI应用?
AI时代飞速发展,大模型和AI的应用创新不断涌现,面对百花齐放的AI模型,阿里云计算平台大数据AI解决方案总监魏博文分享如何通过阿里云提供的大数据AI一体化平台,解决企业开发难、部署繁、成本高等一系列问题,让中小企业快速搭建AI应用。
浏览器自动化检测对抗:修改navigator.webdriver属性的底层实现
本文介绍了如何构建一个反检测爬虫以爬取Amazon商品信息。通过使用`undetected-chromedriver`规避自动化检测,修改`navigator.webdriver`属性隐藏痕迹,并结合代理、Cookie和User-Agent技术,实现稳定的数据采集。代码包含浏览器配置、无痕设置、关键词搜索及数据提取等功能,同时提供常见问题解决方法,助你高效应对反爬策略。
比扩散策略更高效的生成模型:流匹配的理论基础与Pytorch代码实现
扩散模型和流匹配是生成高分辨率数据(如图像和机器人轨迹)的先进技术。扩散模型通过逐步去噪生成数据,其代表应用Stable Diffusion已扩展至机器人学领域形成“扩散策略”。流匹配作为更通用的方法,通过学习时间依赖的速度场将噪声转化为目标分布,适用于图像生成和机器人轨迹生成,且通常以较少资源实现更快生成。 本文深入解析流匹配在图像生成中的应用,核心思想是将图像视为随机变量的实现,并通过速度场将源分布转换为目标分布。文中提供了一维模型训练实例,展示了如何用神经网络学习速度场,以及使用最大均值差异(MMD)改进训练效果。与扩散模型相比,流匹配结构简单,资源需求低,适合多模态分布生成。
AI大模型运维开发探索第四篇:智能体分阶段演进路线
本文探讨了智能体工程的演进历程,从最初的思维链(智能体1.0)到实例化智能体(智能体2.0),再到结构化智能体(智能体3.0),最终展望了自演进智能体(智能体4.0)。文章详细分析了各阶段遇到的问题及解决策略,如工具调用可靠性、推理能力提升等,并引入了大模型中间件的概念以优化业务平台与工具间的协调。此外,文中还提到了RunnableHub开源项目,为读者提供了实际落地的参考方案。通过不断迭代,智能体逐渐具备更强的适应性和解决问题的能力,展现了未来AI发展的潜力。
强化学习:时间差分(TD)(SARSA算法和Q-Learning算法)(看不懂算我输专栏)——手把手教你入门强化学习(六)
本文介绍了时间差分法(TD)中的两种经典算法:SARSA和Q-Learning。二者均为无模型强化学习方法,通过与环境交互估算动作价值函数。SARSA是On-Policy算法,采用ε-greedy策略进行动作选择和评估;而Q-Learning为Off-Policy算法,评估时选取下一状态中估值最大的动作。相比动态规划和蒙特卡洛方法,TD算法结合了自举更新与样本更新的优势,实现边行动边学习。文章通过生动的例子解释了两者的差异,并提供了伪代码帮助理解。
vscode推送项目到github仓库故障解决1
本文介绍了如何优雅解决本地仓库与远程仓库历史记录不一致的问题,并提供避免未来问题的最佳实践。核心在于理解问题根源(如历史记录差异和常见原因),采用推荐的解决方案(先本地初始化再关联远程仓库),并遵循一致的工作流程、团队协作规范及熟悉 Git 命令。通过强制推送或合并无关历史记录等方式处理现有冲突,同时养成良好习惯以预防类似问题。
探秘站点检测访问中代理 IP 的实用技巧
随着互联网发展,使用代理IP的需求增加。站点检测代理IP的方法包括:1. IP地址黑名单;2. HTTP头部检查(如X-Forwarded-For);3. 行为分析;4. 地理位置检测;5. CAPTCHA验证;6. 连接特征分析。这些技术帮助网站判断访问是否来自代理。
面向高效大模型推理的软硬协同加速技术 多元化 AI 硬件引入评测体系
本文介绍了AI硬件评测体系的三大核心方面:统一评测标准、平台化与工具化、多维度数据消费链路。通过标准化评测流程,涵盖硬件性能、模型推理和训练性能,确保评测结果客观透明。平台化实现资源管理与任务调度,支持大规模周期性评测;工具化则应对紧急场景,快速适配并生成报告。最后,多维度数据消费链路将评测数据结构化保存,服务于综合通用、特定业务及专业性能分析等场景,帮助用户更好地理解和使用AI硬件。
Apache Flink 2.0:Streaming into the Future
本文整理自阿里云智能高级技术专家宋辛童、资深技术专家梅源和高级技术专家李麟在 Flink Forward Asia 2024 主会场的分享。三位专家详细介绍了 Flink 2.0 的四大技术方向:Streaming、Stream-Batch Unification、Streaming Lakehouse 和 AI。主要内容包括 Flink 2.0 的存算分离云原生化、流批一体的 Materialized Table、Flink 与 Paimon 的深度集成,以及 Flink 在 AI 领域的应用。
【赵渝强老师】Yarn的资源调度策略
Yarn作为资源和任务调度平台,支持多个应用程序同时运行,如MapReduce、Spark和Flink等。Yarn的资源调度方式主要包括FIFO Scheduler(先来先服务)、Capacity Scheduler(容量调度)和Fair Scheduler(公平调度)。FIFO Scheduler按任务提交顺序调度;Capacity Scheduler通过队列管理资源,支持多租户共享;Fair Scheduler则根据任务权重动态分配资源,确保公平性。
从零开始构建nlp情感分析模型!
本教程介绍了如何使用PyTorch和Hugging Face的Transformers库构建一个情感分析模型。主要内容包括导入所需库、读取训练数据集、加载预训练的BERT模型和分词器、定义情感数据集类、划分训练集和验证集、创建数据加载器、设置训练参数、训练模型、评估模型性能以及定义和测试预测函数。通过这些步骤,可以实现一个简单而有效的情感分析模型。
GraphRAG:构建下一代知识图谱驱动的对话系统
【10月更文挑战第10天】随着自然语言处理(NLP)技术的发展,对话系统已经从简单的基于规则的问答系统演变为能够理解复杂语境并提供个性化服务的智能助手。然而,传统的对话系统往往依赖于预先定义好的模板或有限的知识库,这限制了它们在理解和生成多样化响应方面的能力。为了解决这一问题,GraphRAG(Graph-based Retrieval-Augmented Generation)技术应运而生。GraphRAG结合了大规模的知识图谱和先进的NLP模型,旨在提升对话系统的理解和响应能力。
Selenium中定位元素的9种方法
在Selenium中,定位页面元素是自动化测试和网页爬虫的基础。常用的9种元素定位方法包括:ID、Name、Class Name、Tag Name、CSS Selector、XPath、Link Text、Partial Link Text,以及XPath和CSS选择器的组合使用。每种方法各有优劣,建议根据页面的具体情况和元素的属性选择最合适的方法,并使用显式等待确保元素可用。
使用静态IP时出现“代理检测失败”的原因是什么?
随着数字化时代的加速发展,网络安全与隐私保护成为核心需求,HTTP凭借其独特优势成为新时代热门选择。本文分析了“代理检测失败,请确认代理IP的有效性”这一问题,主要原因包括:代理IP失效、配置错误、网络不稳定、类型不匹配及请求频率过高。解决建议为检查IP有效性、确保正确配置、选择合适代理类型并控制请求频率。希望这能帮助您解决问题!
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
Elasticsearch 的实时监控与告警
【9月更文第3天】随着数据量的不断增加和业务复杂度的提升,对数据系统的实时监控和告警变得至关重要。Elasticsearch 作为一个高性能的搜索和分析引擎,提供了丰富的工具和插件来帮助用户实现实时监控和自动化告警。本文将详细介绍如何配置 Elasticsearch 以实现实时数据监控,并自动触发告警机制。
实时数仓 Hologres产品使用合集之如何查询50万Tablet
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
LangChain进阶:创建多模态应用
【8月更文第4天】随着自然语言处理 (NLP) 和计算机视觉 (CV) 技术的不断发展,多模态应用变得越来越普遍。这些应用结合了文本、图像、音频等多种数据类型,以增强用户体验并解决复杂的问题。LangChain 作为一款强大的工具链,可以很好地支持多模态数据的处理,从而开发出具有高度互动性和实用性的应用。
阿里云开源利器:DataX3.0——高效稳定的离线数据同步解决方案
对于需要集成多个数据源进行大数据分析的场景,DataX3.0同样提供了有力的支持。企业可以使用DataX将多个数据源的数据集成到一个统一的数据存储系统中,以便进行后续的数据分析和挖掘工作。这种集成能力有助于提升数据分析的效率和准确性,为企业决策提供有力支持。
大语言模型的Scaling Law:如何随着模型大小、训练数据和计算资源的增加而扩展
在这篇文章中,我们将介绍使这些模型运作的秘密武器——一个由三个关键部分组成的法则:模型大小、训练数据和计算能力。通过理解这些因素如何相互作用和规模化,我们将获得关于人工智能语言模型过去、现在和未来的宝贵见解。
入职必会-开发环境搭建01-JDK下载和安装
JDK(Java Development Kit)是Java开发工具包,包含Java虚拟机(JVM)、Java类库及开发工具,如调试器、性能分析工具和文档生成工具。JVM执行Java字节码,类库提供预定义类和方法简化开发,开发工具助力高效开发、调试和优化Java应用。
阿里云ODPS PySpark任务使用mmlspark/synapseml运行LightGBM进行Boosting算法的高效训练与推理
阿里云ODPS PySpark任务使用mmlspark/synapseml运行LightGBM进行Boosting算法的高效训练与推理
阿里云 EMR StarRocks VS 开源版本功能差异介绍
阿里云 E-MapReduce Serverless StarRocks 版是阿里云提供的 Serverless StarRocks 全托管服务,提供高性能、全场景、极速统一的数据分析体验,具备开箱即用、弹性扩展、监控管理、慢 SQL 诊断分析等全生命周期能力。内核 100% 兼容 StarRocks,性能比传统 OLAP 引擎提升 3-5 倍,助力企业高效构建大数据应用。本篇文章重点介绍阿里云 EMR StarRocks 与开源 StarRocks 的对比与客户案例。
使用‘消除’技术绕过LLM的安全机制,不用训练就可以创建自己的nsfw模型
本文探讨了一种名为“abliteration”的技术,该技术能够在不重新训练大型语言模型(LLM)的情况下移除其内置的安全审查机制。通常,LLM在接收到潜在有害输入时会拒绝执行,但这一安全特性牺牲了模型的灵活性。通过对模型残差流的分析,研究人员发现可以识别并消除导致拒绝行为的特定方向,从而允许模型响应所有类型的提示。
一站式实时数仓Hologres整体能力介绍—2024实时数仓Hologres公开课 01
一站式实时数仓Hologres整体能力介绍—2024实时数仓Hologres公开课 01
Dify数据库结构导出到PowerDesigner
Dify是开源大语言模型应用开发平台,助力快速构建生成式AI应用。PowerDesigner是SAP的企业级建模工具,用于数据建模、业务流程建模和企业架构规划。通过PostgreSQL的`pg_dump`导出表结构到SQL文件,然后在PowerDesigner中导入生成物理数据模型,从而实现Dify数据库结构到PowerDesigner的迁移。
Hive 和 HDFS、MySQL 之间的关系
Hive是Hadoop上的数据仓库工具,用HiveQL进行大数据查询;HDFS是分布式文件系统,用于存储大规模数据,常与Hive结合,提供数据存储和高可靠性。MySQL是RDBMS,适用于结构化数据管理,在大数据环境里可存储Hive的元数据,提升查询效率和元数据管理。三者协同处理数据管理和分析任务。
Ubuntu20.04安装软件报错:The following packages have unmet dependencies - 蓝易云
请注意,替换上述命令中的 `<package-name>`为你实际要安装的软件包名。
1688API接口推荐:1688口令转换真实链接接口
1688平台的item_password接口用于将淘口令短链接转为商品链接。开发者需注册获取API key和secret,通过POST或GET请求接口,输入淘口令代码和参数,返回结果包含商品ID和详细链接。商品详情可进一步通过商品详情接口获取。注意遵守1688平台的规定和条款,确保合法使用API。
数据仓库(13)大数据数仓经典最值得阅读书籍推荐
从事数仓工作,在工作学习过程也看了很多数据仓库方面的数据,此处整理了数仓中经典的,或者值得阅读的书籍,推荐给大家一下,希望能帮助到大家。建议收藏起来,后续有新的书籍清单会更新到这里。
flink cdc 数据问题之数据丢失如何解决
Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。
【Havenask实践篇】完整的性能测试
Havenask是阿里巴巴智能引擎事业部自研的开源高性能搜索引擎,深度支持了包括淘宝、天猫、菜鸟、高德、饿了么在内几乎整个阿里的搜索业务。性能测试的目的在于评估搜索引擎在各种负载和条件下的响应速度、稳定性。通过模拟不同的用户行为和查询模式,我们可以揭示潜在的瓶颈、优化索引策略、调整系统配置,并确保Havenask在用户数量激增或数据量剧增时仍能保持稳定运行。本文举例对Havenask进行召回性能测试的一个简单场景,在搭建好Havenask服务并写入数据后,使用wrk对Havenask进行压测,查看QPS和查询耗时等性能指标。
实时数仓 Hologres产品使用合集之报错:ORCA failed to produce a plan : PlStmt Translation: Group by key is type of imprecise not supported如何解决
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。