数据分布检验利器:通过Q-Q图进行可视化分布诊断、异常检测与预处理优化

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: Q-Q图(Quantile-Quantile Plot)是一种强大的可视化工具,用于验证数据是否符合特定分布(如正态分布)。通过比较数据和理论分布的分位数,Q-Q图能直观展示两者之间的差异,帮助选择合适的统计方法和机器学习模型。本文介绍了Q-Q图的工作原理、基础代码实现及其在数据预处理、模型验证和金融数据分析中的应用。

在机器学习和数据分析中,我们经常需要验证数据是否符合某种特定的分布(如正态分布)。这种验证对于选择合适的统计方法和机器学习模型至关重要。例如许多统计检验和机器学习算法都假设数据服从正态分布。如果这个假设不成立,我们可能需要对数据进行转换或选择其他更适合的方法。

Q-Q图(Quantile-Quantile Plot)就是为解决这个问题而设计的强大可视化工具。它能够直观地展示数据分布与理论分布之间的差异,帮助我们做出正确的分析决策。

统计学基础:理解分布与分位数

什么是分布?

在开始理解Q-Q图之前,我们需要先明确什么是分布。分布描述了数据在不同值上的分布情况。例如:

  • 正态分布:呈钟形,数据对称分布在平均值周围
  • 偏态分布:数据分布不对称,可能向左或向右倾斜
  • 均匀分布:数据在某个范围内均匀分布

分位数的概念

分位数是将有序数据划分为等份的点。最常见的例子是:

  • 中位数:将数据分成两等份的点(0.5分位数)
  • 四分位数:将数据分成四等份的点(0.25, 0.5, 0.75分位数)
  • 百分位数:将数据分成100等份的点(0.01, 0.02, ..., 0.99分位数)

为什么使用分位数?

分位数有几个重要特性:

  1. 不受极端值影响:相比均值,分位数对异常值更稳健
  2. 保持数据的顺序关系:反映了数据的分布特征
  3. 易于比较不同尺度的数据:通过标准化后的位置进行比较

Q-Q图的工作原理

Q-Q图通过比较两个分布的分位数来判断它们的相似性。具体来说:

数据准备

  • 将实际数据从小到大排序
  • 生成理论分布(如正态分布)的对应分位数点

分位数计算

  • 对实际数据计算分位数值
  • 对理论分布计算相同位置的分位数值

绘图对比

  • 横轴:理论分布的分位数
  • 纵轴:实际数据的分位数
  • 如果两个分布相似,点会落在对角线附近

Q-Q图的解读规则:

  • 点落在直线上:两个分布非常相似
  • 点偏离直线但呈S形:数据可能需要简单变换
  • 点严重偏离直线:分布差异显著

在下面的示例中,我们可以看到在中心区域接近正态分布,但在尾部有明显偏离,这说明它具有"肥尾"特征。

基础代码实现与解释

下面是一个基础的Q-Q图实现示例,我们会详细解释每个步骤:

 quantiles=lambdaq : np.arange(1/q,1,1/q)  
 normal_dist=lambdal : np.random.standard_normal(l)  
 q_count=100   # 设置分位数组数量,越大则点越密集

 # 第一步:计算实际数据(BTC收益率)的分位数
 btc_ret=df_btc.close.pct_change()*100  # 计算百分比收益率
 btc_q=btc_ret.quantile(quantiles(q_count))  # 计算分位数

 # 第二步:生成理论分布(标准正态分布)样本
 st_nm_dist=pd.Series(normal_dist(len(btc_ret)))  # 生成正态分布样本
 nd_q=st_nm_dist.quantile(quantiles(q_count))  # 计算其分位数

 # 第三步:创建Q-Q图
 plt.scatter(nd_q,btc_q)  # 绘制散点图

 # 第四步:添加参考线(理想情况下的直线)
 x,y=nd_q,btc_q  
 fromscipyimportstats  
 lr_params=stats.linregress(x,y)  # 计算线性回归参数
 slope , intercept=lr_params[0] , lr_params[1]  
 lr_model=slope*x+intercept  
 plt.plot( x , lr_model , color='red')  

 # 添加图表说明
 plt.xlabel('Normal distribution')  
 plt.ylabel('BTC Returns')  
 plt.title('Q-Q Plot')

这段代码的每个部分都有其特定的作用:

  1. quantiles函数创建均匀分布的分位点
  2. normal_dist函数生成标准正态分布的随机样本
  3. pct_change()计算收益率,乘以100转换为百分比
  4. quantile()函数计算实际分位数值
  5. stats.linregress()计算理想参考线的参数

接下来,我们将继续探讨更多应用场景和高级特性。

Q-Q图在机器学习中的应用

数据预处理中的应用

在机器学习中,数据预处理是极其重要的步骤。Q-Q图可以帮助我们:

检测异常值

  • 观察点是否严重偏离直线
  • 尤其关注图的两端点
  • 帮助决定是否需要处理异常值

选择数据转换方法

  • 如果Q-Q图呈现系统性偏差
  • 可以尝试对数转换、Box-Cox转换等
  • 转换后再次用Q-Q图验证效果

验证模型假设

  • 许多机器学习模型假设残差呈正态分布
  • 使用Q-Q图检验这一假设
  • 帮助选择合适的模型

金融数据分析实例

我们以比特币和以太坊的收益率分布对比:

BTC与ETH收益率分布对比分析

从这个Q-Q图中,我们可以观察到:

  1. 两种加密货币的收益率分布高度相似
  2. 这种相似性表明它们可能受相似的市场因素影响
  3. 可以用于构建投资组合或风险管理策略

机器学习应用提示:这种分布相似性可以用于构建预测模型,例如使用一个资产的数据来预测另一个资产的行为。

传统市场与加密货币市场对比

下面是BTC与Nifty指数的对比分析:

传统市场与加密货币市场的分布特征对比

这个对比揭示了重要信息:

  1. 两个市场存在一定的分布相似性
  2. 但加密货币市场可能表现出更极端的波动
  3. 这种差异对机器学习模型的选择有重要影响

高级概念:分位数计算与插值

插值的重要性

在机器学习中,数据往往是离散的样本点,但我们需要估计连续分布的特征。插值技术可以帮助我们:

  1. 更准确地估计分位数
  2. 生成平滑的Q-Q图
  3. 提高统计推断的准确性

插值计算详解

考虑序列s = [1,2,3],我们来详细解释插值过程:

示例1:计算0.1分位数

 步骤1:计算理论位置 = (n-1)*p = (3-1)*0.1 = 0.2
 步骤2:确定相邻点:
   - 下界:index 0,值为1
   - 上界:index 1,值为2
 步骤3:线性插值:1 + 0.2*(2-1) = 1.2

这个计算过程在机器学习中很重要,因为:

  • 它提供了更准确的分布估计
  • 有助于生成更平滑的特征
  • 改善模型的泛化能力

实际应用中的考虑因素

在使用Q-Q图进行机器学习数据分析时,需要注意:

  1. 样本量的影响- 样本太少:分位数估计不准确- 样本太多:计算开销增大- 建议:根据具体需求选择合适的分位点数量
  2. 异常值处理- Q-Q图能很好地展示异常值- 需要结合业务场景决定是否处理- 考虑使用稳健的统计方法
  3. 可视化优化- 考虑添加置信区间- 可以使用不同颜色标记不同区域- 添加适当的图例和标签

在机器学习流程中的应用建议

  1. 数据探索阶段- 使用Q-Q图快速评估数据分布- 识别潜在的数据问题- 确定预处理策略
  2. 特征工程阶段- 验证转换效果- 评估特征分布- 指导特征选择
  3. 模型验证阶段- 检查残差分布- 评估模型假设- 指导模型改进

总结

Q-Q图在机器学习领域扮演着多重重要角色。作为一种统计可视化工具,它首先能帮助研究人员深入理解数据的分布特征,让我们直观地看到数据是否符合某种理论分布。通过Q-Q图的分析结果,研究人员可以更好地制定数据预处理的策略,比如确定是否需要进行数据转换或标准化。此外Q-Q图还能帮助验证模型的各种统计假设,为模型的选择和优化提供重要参考。在统计推断方面,Q-Q图提供了直观的可视化支持,使得统计分析的结果更容易理解和解释。

对于想要学习使用Q-Q图的初学者,建议采取循序渐进的学习方法。可以先从简单的、规模较小的数据集开始练习,熟悉Q-Q图的基本特征和解读方法。在分析过程中,重要的是要把图形特征与实际问题结合起来解释,建立起理论与实践的连接。同时要特别注意观察图中出现的异常模式,这往往能揭示数据中的重要信息。最后建议多尝试不同的数据转换方法,观察数据在不同转换下的表现,这样能够更全面地理解数据的特征和处理方法的效果。

https://avoid.overfit.cn/post/7794c4935b424ec5ae1eafab820a886e

作者:Adarsh Singh

目录
相关文章
|
5天前
|
存储 运维 安全
云上金融量化策略回测方案与最佳实践
2024年11月29日,阿里云在上海举办金融量化策略回测Workshop,汇聚多位行业专家,围绕量化投资的最佳实践、数据隐私安全、量化策略回测方案等议题进行深入探讨。活动特别设计了动手实践环节,帮助参会者亲身体验阿里云产品功能,涵盖EHPC量化回测和Argo Workflows量化回测两大主题,旨在提升量化投研效率与安全性。
云上金融量化策略回测方案与最佳实践
|
7天前
|
人工智能 自然语言处理 前端开发
从0开始打造一款APP:前端+搭建本机服务,定制暖冬卫衣先到先得
通义灵码携手科技博主@玺哥超carry 打造全网第一个完整的、面向普通人的自然语言编程教程。完全使用 AI,再配合简单易懂的方法,只要你会打字,就能真正做出一个完整的应用。
7809 19
|
11天前
|
Cloud Native Apache 流计算
资料合集|Flink Forward Asia 2024 上海站
Apache Flink 年度技术盛会聚焦“回顾过去,展望未来”,涵盖流式湖仓、流批一体、Data+AI 等八大核心议题,近百家厂商参与,深入探讨前沿技术发展。小松鼠为大家整理了 FFA 2024 演讲 PPT ,可在线阅读和下载。
4288 10
资料合集|Flink Forward Asia 2024 上海站
|
19天前
|
人工智能 自动驾驶 大数据
预告 | 阿里云邀您参加2024中国生成式AI大会上海站,马上报名
大会以“智能跃进 创造无限”为主题,设置主会场峰会、分会场研讨会及展览区,聚焦大模型、AI Infra等热点议题。阿里云智算集群产品解决方案负责人丛培岩将出席并发表《高性能智算集群设计思考与实践》主题演讲。观众报名现已开放。
|
11天前
|
自然语言处理 数据可视化 API
Qwen系列模型+GraphRAG/LightRAG/Kotaemon从0开始构建中医方剂大模型知识图谱问答
本文详细记录了作者在短时间内尝试构建中医药知识图谱的过程,涵盖了GraphRAG、LightRAG和Kotaemon三种图RAG架构的对比与应用。通过实际操作,作者不仅展示了如何利用这些工具构建知识图谱,还指出了每种工具的优势和局限性。尽管初步构建的知识图谱在数据处理、实体识别和关系抽取等方面存在不足,但为后续的优化和改进提供了宝贵的经验和方向。此外,文章强调了知识图谱构建不仅仅是技术问题,还需要深入整合领域知识和满足用户需求,体现了跨学科合作的重要性。
|
7天前
|
人工智能 容器
三句话开发一个刮刮乐小游戏!暖ta一整个冬天!
本文介绍了如何利用千问开发一款情侣刮刮乐小游戏,通过三步简单指令实现从单个功能到整体框架,再到多端优化的过程,旨在为生活增添乐趣,促进情感交流。在线体验地址已提供,鼓励读者动手尝试,探索编程与AI结合的无限可能。
三句话开发一个刮刮乐小游戏!暖ta一整个冬天!
|
1月前
|
存储 人工智能 弹性计算
阿里云弹性计算_加速计算专场精华概览 | 2024云栖大会回顾
2024年9月19-21日,2024云栖大会在杭州云栖小镇举行,阿里云智能集团资深技术专家、异构计算产品技术负责人王超等多位产品、技术专家,共同带来了题为《AI Infra的前沿技术与应用实践》的专场session。本次专场重点介绍了阿里云AI Infra 产品架构与技术能力,及用户如何使用阿里云灵骏产品进行AI大模型开发、训练和应用。围绕当下大模型训练和推理的技术难点,专家们分享了如何在阿里云上实现稳定、高效、经济的大模型训练,并通过多个客户案例展示了云上大模型训练的显著优势。
104578 10
|
7天前
|
消息中间件 人工智能 运维
12月更文特别场——寻找用云高手,分享云&AI实践
我们寻找你,用云高手,欢迎分享你的真知灼见!
607 39
|
4天前
|
弹性计算 运维 监控
阿里云云服务诊断工具:合作伙伴架构师的深度洞察与优化建议
作为阿里云的合作伙伴架构师,我深入体验了其云服务诊断工具,该工具通过实时监控与历史趋势分析,自动化检查并提供详细的诊断报告,极大提升了运维效率和系统稳定性,特别在处理ECS实例资源不可用等问题时表现突出。此外,它支持预防性维护,帮助识别潜在问题,减少业务中断。尽管如此,仍建议增强诊断效能、扩大云产品覆盖范围、提供自定义诊断选项、加强教育与培训资源、集成第三方工具,以进一步提升用户体验。
624 243
|
1天前
|
弹性计算 运维 监控
云服务测评 | 基于云服务诊断全方位监管云产品
本文介绍了阿里云的云服务诊断功能,包括健康状态和诊断两大核心功能。作者通过个人账号体验了该服务,指出其在监控云资源状态和快速排查异常方面的优势,同时也提出了一些改进建议,如增加告警配置入口和扩大诊断范围等。