部署Spark2.2集群(on Yarn模式)

简介: 部署Spark on Yarn集群

欢迎访问我的GitHub

这里分类和汇总了欣宸的全部原创(含配套源码): https://github.com/zq2599/blog_demos

机器规划

  • 本次实战用到了三台CentOS7的机器,身份信息如下所示:
IP地址 hostname(主机名) 身份
192.168.119.163 node0 NameNode、ResourceManager、HistoryServer、Master
192.168.119.164 node1 DataNode、NodeManager、Worker
192.168.119.165 node2 DataNode、NodeManager、Worker 、SecondaryNameNode
  • 要注意的地方:
  1. spark的Master和hdfs的NameNode、Yarn的ResourceManager在同一台机器;
  2. spark的Worker和hdfs的DataNode、Yarn的NodeManager在同一台机器;

先部署和启动hadoop集群环境

  • 部署spark2.2集群on Yarn模式的前提,是先搭建好hadoop集群环境,请参考《Linux部署hadoop2.7.7集群》一文,将hadoop集群环境部署并启动成功;

部署spark集群

  1. 本次实战的部署方式,是先部署standalone模式的spark集群,再做少量配置修改,即可改为on Yarn模式;
  2. standalone模式的spark集群部署,请参考《部署spark2.2集群(standalone模式)》一文,要注意的是spark集群的master和hadoop集群的NameNode是同一台机器,worker和DataNode在是同一台机器,并且建议spark和hadoop部署都用同一个账号来进行;

修改配置

  • 如果您已经完成了hadoop集群和spark集群(standalone模式)的部署,接下来只需要两步设置即可:
  • 假设hadoop的文件夹hadoop-2.7.7所在目录为/home/hadoop/,打开spark的spark-env.sh文件,在尾部追加一行:
export HADOOP_CONF_DIR=/home/hadoop/hadoop-2.7.7/etc/hadoop
  • 打开hadoop-2.7.7/etc/hadoop/yarn-site.xml文件,在configuration节点中增加下面两个子节点,如果不做以下设置,在提交spark任务的时候,yarn可能将spark任务kill掉,导致"Failed to send RPC xxxxxx"异常:
<property>
  <name>yarn.nodemanager.pmem-check-enabled</name>
  <value>false</value>
</property>
<property>
  <name>yarn.nodemanager.vmem-check-enabled</name>
  <value>false</value>
</property>
  • 本次实战一共有三台电脑,请确保在每台电脑上都做了上述配置;

启动hadoop和spark

  • hadoop和spark都部署在当前账号的家目录下,因此启动命令和顺序如下:
~/hadoop-2.7.7/sbin/start-dfs.sh \
&& ~/hadoop-2.7.7/sbin/start-yarn.sh \
&& ~/hadoop-2.7.7/sbin/mr-jobhistory-daemon.sh start historyserver \
&& ~/spark-2.3.2-bin-hadoop2.7/sbin/start-all.sh

验证spark

  • 在hdfs创建一个目录用于保存输入文件:
~/hadoop-2.7.7/bin/hdfs dfs -mkdir /input
  • 准备一个txt文件(我这里是GoneWiththeWind.txt),提交到hdfs的/input目录下:
~/hadoop-2.7.7/bin/hdfs dfs -put ~/GoneWiththeWind.txt /input
  • 以client模式启动spark-shell
~/spark-2.3.2-bin-hadoop2.7/bin/spark-shell --master yarn --deploy-mode client
  • 以下信息表示启动成功:
2019-02-09 10:13:09 WARN  NativeCodeLoader:62 - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
2019-02-09 10:13:15 WARN  Client:66 - Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
Spark context Web UI available at http://node0:4040
Spark context available as 'sc' (master = yarn, app id = application_1549678248927_0001).
Spark session available as 'spark'.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.3.2
      /_/
         
Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_191)
Type in expressions to have them evaluated.
Type :help for more information.

scala> 
  • 输入以下内容,即可统计之前提交的txt文件中的单词出现次数,然后将前十名打印出来:
sc.textFile("hdfs://node0:8020/input/GoneWiththeWind.txt").flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey(_ + _).sortBy(_._2,false).take(10).foreach(println)
  • 控制台输出如下,可见任务执行成功:
scala> sc.textFile("hdfs://node0:8020/input/GoneWiththeWind.txt").flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey(_ + _).sortBy(_._2,false).take(10).foreach(println)
(the,18264)                                                                     
(and,14150)
(to,10020)
(of,8615)
(a,7571)
(her,7086)
(she,6217)
(was,5912)
(in,5751)
(had,4502)
  • 在网页上查看yarn信息,如下图:

在这里插入图片描述

java版本的任务提交

  • 如果您的开发语言是java,请将应用编译构建为jar包,然后执行以下命令,就会以client模式提交任务到yarn:
~/spark-2.3.2-bin-hadoop2.7/bin/spark-submit \
--master yarn \
--deploy-mode client \
--class com.bolingcavalry.sparkwordcount.WordCount \
--executor-memory 512m \
--total-executor-cores 2 \
~/jars/sparkwordcount-1.0-SNAPSHOT.jar \
192.168.119.163 \
8020 \
GoneWiththeWind.txt

停止hadoop和spark

  • 如果需要停止hadoop和spark服务,命令和顺序如下:
~/spark-2.3.2-bin-hadoop2.7/sbin/stop-all.sh \
&& ~/hadoop-2.7.7/sbin/mr-jobhistory-daemon.sh stop historyserver \
&& ~/hadoop-2.7.7/sbin/stop-yarn.sh \
&& ~/hadoop-2.7.7/sbin/stop-dfs.sh
  • 至此,Spark on Yarn模式的集群部署和验证已经完成,希望能够带给您一些参考;

欢迎关注阿里云开发者社区博客:程序员欣宸

学习路上,你不孤单,欣宸原创一路相伴...
相关文章
|
3月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
207 6
|
3月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
96 2
|
2月前
|
分布式计算 资源调度 Hadoop
Spark Standalone与YARN的区别?
本文详细解析了 Apache Spark 的两种常见部署模式:Standalone 和 YARN。Standalone 模式自带轻量级集群管理服务,适合小规模集群;YARN 模式与 Hadoop 生态系统集成,适合大规模生产环境。文章通过示例代码展示了如何在两种模式下运行 Spark 应用程序,并总结了两者的优缺点,帮助读者根据需求选择合适的部署模式。
101 3
|
3月前
|
分布式计算 资源调度 Hadoop
Spark Standalone与YARN的区别?
【10月更文挑战第5天】随着大数据处理需求的增长,Apache Spark 成为了广泛采用的大数据处理框架。本文详细解析了 Spark Standalone 与 YARN 两种常见部署模式的区别,并通过示例代码展示了如何在不同模式下运行 Spark 应用程序。Standalone 模式自带轻量级集群管理,适合小规模集群或独立部署;YARN 则作为外部资源管理器,能够与 Hadoop 生态系统中的其他应用共享资源,更适合大规模生产环境。文章对比了两者的资源管理、部署灵活性、扩展性和集成能力,帮助读者根据需求选择合适的部署模式。
49 1
|
4月前
|
消息中间件 分布式计算 Java
Linux环境下 java程序提交spark任务到Yarn报错
Linux环境下 java程序提交spark任务到Yarn报错
56 5
|
3月前
|
资源调度 分布式计算 大数据
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
140 0
|
5月前
|
SQL 分布式计算 监控
|
5月前
|
资源调度 关系型数据库 MySQL
【Flink on YARN + CDC 3.0】神操作!看完这篇教程,你也能成为数据流处理高手!从零开始,一步步教会你在Flink on YARN模式下如何配置Debezium CDC 3.0,让你的数据库变更数据瞬间飞起来!
【8月更文挑战第15天】随着Apache Flink的普及,企业广泛采用Flink on YARN部署流处理应用,高效利用集群资源。变更数据捕获(CDC)工具在现代数据栈中至关重要,能实时捕捉数据库变化并转发给下游系统处理。本文以Flink on YARN为例,介绍如何在Debezium CDC 3.0中配置MySQL连接器,实现数据流处理。首先确保YARN上已部署Flink集群,接着安装Debezium MySQL连接器并配置Kafka Connect。最后,创建Flink任务消费变更事件并提交任务到Flink集群。通过这些步骤,可以构建出从数据库变更到实时处理的无缝数据管道。
454 2
|
4月前
|
分布式计算 资源调度 Hadoop
在YARN集群上运行部署MapReduce分布式计算框架
主要介绍了如何在YARN集群上配置和运行MapReduce分布式计算框架,包括准备数据、运行MapReduce任务、查看任务日志,并启动HistoryServer服务以便于日志查看。
87 0
|
4月前
|
资源调度 分布式计算 Hadoop
YARN(Hadoop操作系统)的架构
本文详细解释了YARN(Hadoop操作系统)的架构,包括其主要组件如ResourceManager、NodeManager和ApplicationMaster的作用以及它们如何协同工作来管理Hadoop集群中的资源和调度作业。
185 3
YARN(Hadoop操作系统)的架构

相关实验场景

更多