【赵渝强老师】Spark RDD的缓存机制

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: Spark RDD通过`persist`或`cache`方法可将计算结果缓存,但并非立即生效,而是在触发action时才缓存到内存中供重用。`cache`方法实际调用了`persist(StorageLevel.MEMORY_ONLY)`。RDD缓存可能因内存不足被删除,建议结合检查点机制保证容错。示例中,读取大文件并多次调用`count`,使用缓存后执行效率显著提升,最后一次计算仅耗时98ms。

b204.png

Spark RDD通过persist方法或cache方法可以将计算结果的缓存,但是并不是这两个方法被调用时立即缓存,而是触发后面的action时,该RDD才会被缓存在计算节点的内存中并供后面重用。下面是persist方法或cache方法的函数定义:

def persist(): this.type = persist(StorageLevel.MEMORY_ONLY)
def cache(): this.type = persist()


视频讲解如下:

通过函数的定义发现,cache最终也是调用了persist方法,默认的存储级别都是仅在内存存储一份,Spark在object StorageLevel中定义了缓存的存储级别。下面是在StorageLevel中的定义的缓存级别。

val NONE = new StorageLevel(false, false, false, false)
val DISK_ONLY = new StorageLevel(true, false, false, false)
val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)
val MEMORY_ONLY = new StorageLevel(false, true, false, true)
val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)
val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)
val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)
val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
val MEMORY_AND_DISK_SER_2=new StorageLevel(true, true, false, false, 2)
val OFF_HEAP = new StorageLevel(true, true, true, false, 1)


需要说明的是,使用RDD的缓存机制,数据可能丢失;或者会由于内存的不足而造成数据被删除。可以通过使用RDD的检查点机制了保证缓存的容错,即使缓存丢失了也能保证计算的正确执行。


下面是使用RDD缓存机制的一个示例。这里使用RDD读取一个大的文件,该文件中包含918843条记录。通过Spark Web Console可以对比出在不使用缓存和使用缓存时,执行效率的差别。

(1)读取一个大文件。

scala> val rdd1 = sc.textFile("/root/temp/sales")


(2)触发一个计算,这里没有使用缓存。

scala> srdd1.count


(3)调用cache方法标识该RDD可以被缓存。

scala> rdd1.cache


(4)第二次触发计算,计算完成后会将结果缓存。

scala> rdd1.count


(5)第三次触发计算,这里会直接从之前的缓存中获取结果。

scala> rdd1.count


(6)访问Spark的Web Console观察这三次count计算的执行时间,可以看成最后一次count计算只耗费了98ms,如下图所示。


相关文章
|
1月前
|
分布式计算 Spark
【赵渝强老师】Spark的容错机制:检查点
Spark通过Checkpoint机制将RDD状态持久化到磁盘,以支持容错。当任务执行出错时,可以从检查点位置重新计算,减少开销。Checkpoint目录可设置为本地文件夹或HDFS。建议生产系统使用高可靠的文件系统保存检查点。文中详细介绍了在本地和HDFS上设置检查点目录的步骤,并附有代码示例和视频讲解。
|
1月前
|
分布式计算 Spark
【赵渝强老师】Spark RDD的依赖关系和任务阶段
Spark RDD之间的依赖关系分为窄依赖和宽依赖。窄依赖指父RDD的每个分区最多被一个子RDD分区使用,如map、filter操作;宽依赖则指父RDD的每个分区被多个子RDD分区使用,如分组和某些join操作。窄依赖任务可在同一阶段完成,而宽依赖因Shuffle的存在需划分不同阶段执行。借助Spark Web Console可查看任务的DAG图及阶段划分。
100 15
|
3月前
|
缓存 Java 数据库连接
MyBatis缓存机制
MyBatis提供两级缓存机制:一级缓存(Local Cache)默认开启,作用范围为SqlSession,重复查询时直接从缓存读取;二级缓存(Second Level Cache)需手动开启,作用于Mapper级别,支持跨SqlSession共享数据,减少数据库访问,提升性能。
54 1
|
3月前
|
缓存 Java 数据库连接
深入探讨:Spring与MyBatis中的连接池与缓存机制
Spring 与 MyBatis 提供了强大的连接池和缓存机制,通过合理配置和使用这些机制,可以显著提升应用的性能和可扩展性。连接池通过复用数据库连接减少了连接创建和销毁的开销,而 MyBatis 的一级缓存和二级缓存则通过缓存查询结果减少了数据库访问次数。在实际应用中,结合具体的业务需求和系统架构,优化连接池和缓存的配置,是提升系统性能的重要手段。
187 4
|
5月前
|
存储 缓存 分布式计算
大数据-83 Spark 集群 RDD编程简介 RDD特点 Spark编程模型介绍
大数据-83 Spark 集群 RDD编程简介 RDD特点 Spark编程模型介绍
76 4
|
5月前
|
存储 缓存 分布式计算
大数据-89 Spark 集群 RDD 编程-高阶 编写代码、RDD依赖关系、RDD持久化/缓存
大数据-89 Spark 集群 RDD 编程-高阶 编写代码、RDD依赖关系、RDD持久化/缓存
81 4
|
5月前
|
分布式计算 Java 大数据
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
67 0
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
|
5月前
|
SQL 分布式计算 大数据
大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化
大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化
80 0
|
5月前
|
缓存 分布式计算 大数据
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(一)
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(一)
110 0
|
5月前
|
分布式计算 算法 大数据
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(二)
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(二)
89 0