大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(正在更新!)

章节内容

上节我们完成了如下的内容:


SparkSQL 语句 编码 测试 结果

输入输出

数据源包含如Parquet、JSON、CSV、Avro、ORC、Hive、JDBC、ODBC

TextFile

978d49607804daac9defe320cc3c3326_43c0253ba04140ff8e645a5b62940261.png

SparkSQL中的Join

数据分析中将两个数据集进行Join操作是很常见的场景。在Spark的物理计划阶段,Spark的Join Selection类会根据Join Hints 策略,Join表的大小、Join是等值Join还是不等值以及参与Join的Key是否可以排序等条件来选择最终的Join策略,最后Spark会利用选择好的Join策略执行最终的计算。


当前Spark一共支持五种Join策略:


Broadcast hash join (BHJ)

Shuffle hash join (SHJ)

Shuffle sort merge join(SMJ)

Shuffle-and-replicate nested loop join,又叫笛卡尔积(Cartesian product join)

Broadcast nested loop join(BNLJ)

其中 BHJ 和 SMJ 这两种 Join 策略是我们运行 Spark 任务最常见的。

JoinSelection 会先根据 Join 的 Key 为等值Join来选择 Broadcast hash join、Shuffle hash join、Shuffle sort merge join中的一个。

如果Join的Key为不等值Join或者没有指定Join条件,则会选择Broadcast nested loop join 或 Shuffle-and-replicate nested loop join。

不同的Join策略在执行效率上差别很大,了解每种Join策略的执行过程和适用条件是很有必要的。


Broadcast Hash Join

Broadcast Hash Join 的实现是将小表的数据广播到Spark所有的Executor端,这个广播过程和我们自己去广播数据没有什么区别:


利用 Collect 算子将小表的数据从Executor端拉到Driver端

在Driver端调用sparkContext.broadcast广播到所有Executor端

在Executor端使用广播的数据与大表进行Join操作(实际上执行Map操作)

这种Join策略避免了Shuffle操作,一般而言,Broadcast Hash Join会比其他Join策略执行的要快。

02da68259927c633ffb15241499b113c_6e156d7a15b740519b9c102b99b86f2f.png 使用这种 Join 策略必须满足如下的条件:


小表的数据必须很小,可以通过 spark.sql.autoBroadcasetJoinThreshold 参数来配置,默认是10MB

如果内存比较大,可以将阈值适当加大

将 spark.sql.autoBroadcastJoinThreshold 参数设置为-1,可以关闭这种连接方式

只能用于等值Join,不要求参与Join的keys可排序

Shuffle Hash Join

当表中的数据比较大,又不适合使用广播,这个时候就可以考虑 Shuffle Hash Join。

Shuffle Hash Join 同样是在大表和小表进行Join的时候选择了一种策略。

它的计算思想是:把大表和小表按照相同的分区算法和分区数据进行分区(根据参与Join的Keys进行分区),这样保证了 Hash 值一样的数据都分发到同一个分区中,然后在同一个 Executor 中两张表 Hash 值一样的分区就可以在本地进行Hash Join了。在进行 Join 之前,还会对小表的分区构建 Hash Map,Shuffle Hash Join 利用了分治思想,把大问题拆解成小问题去解决。

79ee99e3f01c36be44f5b1940954a20f_44cd0864bf94472d9fe57382ab0df871.png 要启动 Shuffle Hash Join 必须满足以下条件:


仅支持等值 Join,不要求参与Join的Keys可排序

spark.sql.join.perferSortMergeJoin 参数必须设置值为 false,参数从Spark2.0版本引入,默认值是true,也就是默认情况下是 Sort Merge Join

小表的大小(plan.stats.sizeInBytes)必须小于(spark.sql.autoBroadcastJoinThreshold * spark.sql.shuffle.partitions(默认200))

而且小表大小(stats.sizeInBytes)的三倍必须小于等于大表的大小(stats.sizeInBytes),也就是(a.stats.sizeInBytes * 3 < b.stats.sizeInBytes)

Shuffle Sort Merge Join

前面两种Join策略对表的大小都有条件的,如果参与Join的表都很大,这时候就得考虑用 Shuffle Sort Merge Join了。

Shuffle Sort Merge Join 的实现事项:


将两张表按照 Join Key进行Shuffle,保证 Join Key值相同的记录会被分在相应的分区

对每个分区内的数据进行排序

排序后再对相应的分区内的记录进行连接

无论分区多大,Sort Merge Join都不用把一侧的数据全部加载到内存中,而是即用即丢。

因为两个序列都有序,从头遍历,碰到Key相同的就输出,如果不同,左边小取左边,反之就取右边。

这样大大提高了大数据量下的SQL Join的稳定性。

125171248c47af75b36b26074e00b4f5_b5998661fbe04aeea22b0b4187e02bff.png 要启用Shuffle Sort Merge Join必须满足以下条件:


仅支持等值 Join,并且要求参与 Join 的 Keys 可排序

Cartesian Product Join

如果Spark中两张参与Join的表没有指定连接条件,那么产生Cartesian Product Join,这个Join得到的结果其实就是两张表行数的乘积。


Broadcast Nested Loop Join

可以把 Broadcast Nested Loop Join的执行看做下面的计算:

for record_1 in relation_1:
  for record_2 in relation_2:
    # join condition is executed

可以看出 Broadcast Nested Loop Join 在某些情况会对某张表重复扫描多次,效率非常低。从名字可以看出,这种Join会根据相关条件对小表进行广播,以减少表的扫描次数。

Broadcast Nested Loop Join支持等值和不等值Join,支持所有的Join类型。


SQL解析过程

基本概念

SparkSQL 可以说Spark中的精华部分,原来基于RDD构建大数据计算任务,重新在向Dataset转移,原来基于 RDD 写的代码也在迁移。

使用 SparkSQL 编码的好处是非常大的,尤其是性能方面,有很大提升。SparkSQL 中各种内嵌的性能优化比写RDD遵循各种最佳实践更加靠谱。

尤其对于新手来说,比如先 Filter 再 Map,SparkSQL中会自动进行谓词下推,Spark SQL中会自动使用 Broadcast Join来广播小表,把 Shuffle Join转换为 Map Join等等。


SparkSQL对SQL语句的处理和关系型数据库类似,即词法/语法解析、绑定、优化、执行。SparkSQL会先将SQL语句解析成一棵树,然后使用规则(Rule)对Tree进行绑定、优化等处理过程。

SparkSQL由:Core、Catalyst、Hive、Hive-ThriftServer四部分构成:


Core:负责处理数据的输入和输出,如获取数据,查询结果输出成DataFrame等

Catalyst:负责处理整个查询过程,包括解析、绑定、优化等。

Hive:负责对Hive数据进行处理

Hive-ThriftServer:主要用于对Hive的访问

e862dc4f03d261cb0084154b3406ebf0_7306124de3fa46f5820bc1fd7a69912b.png

SparkSQL的代码复杂度是问题的本质复杂度带来说,SparkSQL中的Catalyst框架大部分逻辑是在一个Tree类型的数据结构上做各种折腾,基于Scala来实现还是很优雅的,Scala的偏函数和强大的Case正则匹配,让整个代码看起来非常优雅。


SparkSession是编写Spark应用代码的入口,启动一个spark-shell会提供给你创建spark-session,这个对象是整个Spark应用的起始点,以下是SparkSession的一些重要的变量和方法:

65f1a71e706b4a4582ffc9f87e75e963_50565cc8c4dd4670be3f2ff7d09a7792.png

编写代码

package icu.wzk
import org.apache.spark.sql.{DataFrame, SparkSession}



object TestDemo01 {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder()
      .appName("TestDemo01")
      .master("local[*]")
      .getOrCreate()

    spark.sparkContext.setLogLevel("warn")
    import spark.implicits._

    Seq((0, "zhansan", 10),
      (1, "lisi", 11),
      (2, "wangwu", 12)).toDF("id", "name", "age")
      .createOrReplaceTempView("stu")

    Seq((0, "chinese", 80),
      (0, "math", 100),
      (0, "english", 98),
      (1, "chinese", 86),
      (1, "math", 97),
      (1, "english", 90),
      (2, "chinese", 90),
      (2, "math", 94),
      (2, "english", 88)).toDF("id", "subject", "score")
      .createOrReplaceTempView("score")

    val df: DataFrame = spark.sql(
      """
        |SELECT SUM(v) AS total_score, name
        |FROM (
        |  SELECT stu.id, 100 + 10 + score.score AS v, name
        |  FROM stu
        |  JOIN score ON stu.id = score.id
        |  WHERE stu.age >= 11
        |) tmp
        |GROUP BY name
        |""".stripMargin)

    df.show()

    // 打印执行计划
    println(df.queryExecution)
    println(df.queryExecution.optimizedPlan)

    spark.close()
  }

}

运行输出

执行代码可见控制台输出如下数据(我就不往服务器发了):

控制台的内容如下图所示:

+-----------+------+
|total_score|  name|
+-----------+------+
|        602|wangwu|
|        603|  lisi|
+-----------+------+

== Parsed Logical Plan ==
'Aggregate ['name], ['SUM('v) AS total_score#27, 'name]
+- 'SubqueryAlias `tmp`
   +- 'Project ['stu.id, ((100 + 10) + 'score.score) AS v#26, 'name]
      +- 'Filter ('stu.age >= 11)
         +- 'Join Inner, ('stu.id = 'score.id)
            :- 'UnresolvedRelation `stu`
            +- 'UnresolvedRelation `score`

== Analyzed Logical Plan ==
total_score: bigint, name: string
Aggregate [name#8], [sum(cast(v#26 as bigint)) AS total_score#27L, name#8]
+- SubqueryAlias `tmp`
   +- Project [id#7, ((100 + 10) + score#22) AS v#26, name#8]
      +- Filter (age#9 >= 11)
         +- Join Inner, (id#7 = id#20)
            :- SubqueryAlias `stu`
            :  +- Project [_1#3 AS id#7, _2#4 AS name#8, _3#5 AS age#9]
            :     +- LocalRelation [_1#3, _2#4, _3#5]
            +- SubqueryAlias `score`
               +- Project [_1#16 AS id#20, _2#17 AS subject#21, _3#18 AS score#22]
                  +- LocalRelation [_1#16, _2#17, _3#18]

== Optimized Logical Plan ==
Aggregate [name#8], [sum(cast(v#26 as bigint)) AS total_score#27L, name#8]
+- Project [(110 + score#22) AS v#26, name#8]
   +- Join Inner, (id#7 = id#20)
      :- LocalRelation [id#7, name#8]
      +- LocalRelation [id#20, score#22]

== Physical Plan ==
*(2) HashAggregate(keys=[name#8], functions=[sum(cast(v#26 as bigint))], output=[total_score#27L, name#8])
+- Exchange hashpartitioning(name#8, 200)
   +- *(1) HashAggregate(keys=[name#8], functions=[partial_sum(cast(v#26 as bigint))], output=[name#8, sum#38L])
      +- *(1) Project [(110 + score#22) AS v#26, name#8]
         +- *(1) BroadcastHashJoin [id#7], [id#20], Inner, BuildLeft
            :- BroadcastExchange HashedRelationBroadcastMode(List(cast(input[0, int, false] as bigint)))
            :  +- LocalTableScan [id#7, name#8]
            +- LocalTableScan [id#20, score#22]
Aggregate [name#8], [sum(cast(v#26 as bigint)) AS total_score#27L, name#8]
+- Project [(110 + score#22) AS v#26, name#8]
   +- Join Inner, (id#7 = id#20)
      :- LocalRelation [id#7, name#8]
      +- LocalRelation [id#20, score#22]

接下篇:https://developer.aliyun.com/article/1622630

目录
相关文章
|
28天前
|
算法 Java 数据库连接
Java连接池技术,从基础概念出发,解析了连接池的工作原理及其重要性
本文详细介绍了Java连接池技术,从基础概念出发,解析了连接池的工作原理及其重要性。连接池通过复用数据库连接,显著提升了应用的性能和稳定性。文章还展示了使用HikariCP连接池的示例代码,帮助读者更好地理解和应用这一技术。
40 1
|
8天前
|
JavaScript 前端开发 API
Vue.js响应式原理深度解析:从Vue 2到Vue 3的演进
Vue.js响应式原理深度解析:从Vue 2到Vue 3的演进
37 0
|
14天前
|
API 持续交付 网络架构
深入解析微服务架构:原理、优势与实践
深入解析微服务架构:原理、优势与实践
17 0
|
15天前
|
存储 供应链 物联网
深入解析区块链技术的核心原理与应用前景
深入解析区块链技术的核心原理与应用前景
|
15天前
|
存储 供应链 安全
深度解析区块链技术的核心原理与应用前景
深度解析区块链技术的核心原理与应用前景
24 0
|
19天前
|
SQL JSON 分布式计算
【赵渝强老师】Spark SQL的数据模型:DataFrame
本文介绍了在Spark SQL中创建DataFrame的三种方法。首先,通过定义case class来创建表结构,然后将CSV文件读入RDD并关联Schema生成DataFrame。其次,使用StructType定义表结构,同样将CSV文件读入RDD并转换为Row对象后创建DataFrame。最后,直接加载带有格式的数据文件(如JSON),通过读取文件内容直接创建DataFrame。每种方法都包含详细的代码示例和解释。
|
19天前
|
SQL 监控 安全
员工上网行为监控软件:SQL 在数据查询监控中的应用解析
在数字化办公环境中,员工上网行为监控软件对企业网络安全和管理至关重要。通过 SQL 查询和分析数据库中的数据,企业可以精准了解员工的上网行为,包括基础查询、复杂条件查询、数据统计与分析等,从而提高网络管理和安全防护的效率。
26 0
|
1月前
|
供应链 安全 分布式数据库
探索区块链技术:从原理到应用的全面解析
【10月更文挑战第22天】 本文旨在深入浅出地探讨区块链技术,一种近年来引起广泛关注的分布式账本技术。我们将从区块链的基本概念入手,逐步深入到其工作原理、关键技术特点以及在金融、供应链管理等多个领域的实际应用案例。通过这篇文章,读者不仅能够理解区块链技术的核心价值和潜力,还能获得关于如何评估和选择适合自己需求的区块链解决方案的实用建议。
52 0
|
2月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
15天前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
126 7