大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)

接上篇:https://developer.aliyun.com/article/1622631?spm=a2c6h.13148508.setting.25.27ab4f0ehhuqRu

分析内容

queryExecution 就是对整个执行计划的执行引擎,里面有执行过程中各个中间过程变量,整个执行流程如下:

刚才的例子中的SQL语句经过Parser解析后就会变成一个抽象语法树,对应解析后的逻辑计划AST为:

== Analyzed Logical Plan ==
total_score: bigint, name: string
Aggregate [name#8], [sum(cast(v#26 as bigint)) AS total_score#27L, name#8]
+- SubqueryAlias `tmp`
   +- Project [id#7, ((100 + 10) + score#22) AS v#26, name#8]
      +- Filter (age#9 >= 11)
         +- Join Inner, (id#7 = id#20)
            :- SubqueryAlias `stu`
            :  +- Project [_1#3 AS id#7, _2#4 AS name#8, _3#5 AS age#9]
            :     +- LocalRelation [_1#3, _2#4, _3#5]
            +- SubqueryAlias `score`
               +- Project [_1#16 AS id#20, _2#17 AS subject#21, _3#18 AS score#22]
                  +- LocalRelation [_1#16, _2#17, _3#18]

在执行计划中 Project/Projection 代表的意思是投影

其中过滤条件变为了 Filter 节点,这个节点是 UnaryNode (一元节点)类型,只有一个孩子。

两个表中的数据变为了 UnresolvedRelation 节点,节点类型为 LeafNode,即叶子节点,Join操作为节点,这个是一个BinaryNode节点,有两个孩子。

以上节点都是LogicalPlan类型的,可以理解为各种操作的Operator,SparkSQL对各种操作定义了各种Operator。

67847bca91286dca935212fd51614332_a9fba55900b44df1bbb939cfdbd09443.png 这些 Operator 组成的语法树就是整个 Catatyst 优化的基础,Catatyst优化器会在这个树上进行分析修改,把树上的节点挪来挪去进行优化。

经过Parser有了抽象语法树,但是并不知道Score,Sum这些东西,所以就需要 Analyer 定位。


Analyzer会把AST上所有Unresolved的东西都转换为Resolved状态,SparkSQL有很多Resolve规则:


ResolverRelations:解析表(列)的基本类型信息

ResolveFunctions:解析出来函数的基本信息

ResolveReferences:解析引用,通常是解析列名

9e07c0a62f744fe90fbda7ce1288e491_b4ee53e8a1dc40b99e95035f386b94b9.png

常见优化逻辑

这里用到的优化有:谓词下推(Push Down Predicate)、常量折叠(Constant Folding)、字段裁剪(Columning Pruning):

做完逻辑优化,还需要先转换为物理执行计划,将逻辑上可行的执行计划变为Spark可以真正执行的计划:

SparkSQL 把逻辑节点转换为了相应的物理节点,比如Join算子,Spark根据不同的场景为该算子制定了不同的算法策略。


数据在一个一个的Plan中流转,然后每个plan里面表达式都会对数据进行处理,就相当于经过了一个个小函数的调用处理,这里面有大量的函数调用开销,可以把这些小函数内联一下,当成一个大函数。可以看到最终执行计划每个节点面前有个*号,说明整段代码生成被启用。

目录
相关文章
|
2月前
|
SQL 安全 关系型数据库
SQL注入之万能密码:原理、实践与防御全解析
本文深入解析了“万能密码”攻击的运行机制及其危险性,通过实例展示了SQL注入的基本原理与变种形式。文章还提供了企业级防御方案,包括参数化查询、输入验证、权限控制及WAF规则配置等深度防御策略。同时,探讨了二阶注入和布尔盲注等新型攻击方式,并给出开发者自查清单。最后强调安全防护需持续改进,无绝对安全,建议使用成熟ORM框架并定期审计。技术内容仅供学习参考,严禁非法用途。
296 0
|
30天前
|
SQL 存储 自然语言处理
SQL的解析和优化的原理:一条sql 执行过程是什么?
SQL的解析和优化的原理:一条sql 执行过程是什么?
SQL的解析和优化的原理:一条sql 执行过程是什么?
|
2月前
|
SQL 关系型数据库 MySQL
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL 数据库 SQL 语句调优方法详解(2-1)
本文深入介绍 MySQL 数据库 SQL 语句调优方法。涵盖分析查询执行计划,如使用 EXPLAIN 命令及理解关键指标;优化查询语句结构,包括避免子查询、减少函数使用、合理用索引列及避免 “OR”。还介绍了索引类型知识,如 B 树索引、哈希索引等。结合与 MySQL 数据库课程设计相关文章,强调 SQL 语句调优重要性。为提升数据库性能提供实用方法,适合数据库管理员和开发人员。
|
2月前
|
SQL 人工智能 自然语言处理
Text2SQL圣经:从0到1精通Text2Sql(Chat2Sql)的原理,以及Text2Sql开源项目的使用
Text2SQL圣经:从0到1精通Text2Sql(Chat2Sql)的原理,以及Text2Sql开源项目的使用
Text2SQL圣经:从0到1精通Text2Sql(Chat2Sql)的原理,以及Text2Sql开源项目的使用
|
2月前
|
关系型数据库 MySQL 大数据
大数据新视界--大数据大厂之MySQL 数据库课程设计:MySQL 数据库 SQL 语句调优的进阶策略与实际案例(2-2)
本文延续前篇,深入探讨 MySQL 数据库 SQL 语句调优进阶策略。包括优化索引使用,介绍多种索引类型及避免索引失效等;调整数据库参数,如缓冲池、连接数和日志参数;还有分区表、垂直拆分等其他优化方法。通过实际案例分析展示调优效果。回顾与数据库课程设计相关文章,强调全面认识 MySQL 数据库重要性。为读者提供综合调优指导,确保数据库高效运行。
|
4月前
|
SQL 存储 关系型数据库
MySQL原理简介—1.SQL的执行流程
本文介绍了MySQL驱动、数据库连接池及SQL执行流程的关键组件和作用。主要内容包括:MySQL驱动用于建立Java系统与数据库的网络连接;数据库连接池提高多线程并发访问效率;MySQL中的连接池维护多个数据库连接并进行权限验证;网络连接由线程处理,监听请求并读取数据;SQL接口负责执行SQL语句;查询解析器将SQL语句解析为可执行逻辑;查询优化器选择最优查询路径;存储引擎接口负责实际的数据操作;执行器根据优化后的执行计划调用存储引擎接口完成SQL语句的执行。整个流程确保了高效、安全地处理SQL请求。
333 77
|
3月前
|
SQL 大数据 数据挖掘
玩转大数据:从零开始掌握SQL查询基础
玩转大数据:从零开始掌握SQL查询基础
185 35
|
3月前
|
SQL 分布式计算 资源调度
Dataphin功能Tips系列(48)-如何根据Hive SQL/Spark SQL的任务优先级指定YARN资源队列
如何根据Hive SQL/Spark SQL的任务优先级指定YARN资源队列
|
3月前
|
SQL 缓存 Java
框架源码私享笔记(02)Mybatis核心框架原理 | 一条SQL透析核心组件功能特性
本文详细解构了MyBatis的工作机制,包括解析配置、创建连接、执行SQL、结果封装和关闭连接等步骤。文章还介绍了MyBatis的五大核心功能特性:支持动态SQL、缓存机制(一级和二级缓存)、插件扩展、延迟加载和SQL注解,帮助读者深入了解其高效灵活的设计理念。
|
4月前
|
SQL 存储 关系型数据库
MySQL原理简介—10.SQL语句和执行计划
本文介绍了MySQL执行计划的相关概念及其优化方法。首先解释了什么是执行计划,它是SQL语句在查询时如何检索、筛选和排序数据的过程。接着详细描述了执行计划中常见的访问类型,如const、ref、range、index和all等,并分析了它们的性能特点。文中还探讨了多表关联查询的原理及优化策略,包括驱动表和被驱动表的选择。此外,文章讨论了全表扫描和索引的成本计算方法,以及MySQL如何通过成本估算选择最优执行计划。最后,介绍了explain命令的各个参数含义,帮助理解查询优化器的工作机制。通过这些内容,读者可以更好地理解和优化SQL查询性能。

热门文章

最新文章