【航迹关联】基于NNDA、PDA、JPDA三种算法实现航迹关联附matlab代码

简介: 【航迹关联】基于NNDA、PDA、JPDA三种算法实现航迹关联附matlab代码

1 简介

航迹融合处于信息融合系统JDL /DFS 五级功能模型的第二级,属于探测目标的位置级融合,目前该技术已在空、海战场监视系统中得到广泛的常态化值勤应用。航迹融合的主要任务之一,就是将源于同一目标的多条传感器航迹融合成为单一的、更精确的和更可信的系统航迹。在实际工作运行中,由于各雷达探测结果存在着系统误差,使得一个真实目标会产生多条位置“平行”或“交叉”的航迹。因此,在进行航迹融合处理时,首先需要进行系统误差校正和时空配准等数据预处理工作。系统误差校正的方法有标定、瞄星、校飞等,一个正常运转的系统,必然需要对各传感器信息进行校正处理,然而随着使用过程或时间的推移,受多种因素影响,系统误差有可能重新生长,或者也会出现系统误差校正不彻底,存在系统误差“残差”的现象。当区域内目标间距较大,运动状态互不一 致时,航迹融合处理过程具有一定的“容错”能力,可以解决系统误差残差问题带来的影响,然而,当雷达的系统误差残差相比于目标间距已无法再被忽略时,例如多架飞机或多艘舰船联合编队运动时,目标间距较小,目标运动趋势相似,此时则会容易出现航迹关联错误的现象。

航迹融合中非常重要的一步就是如何判断来自不同传感器的两条航迹是否代表同一个目标,也就是航迹关联问题。用于航迹关联的算法有: 基于统计数学的方法、基于模糊数学的方法、基于灰色理论的方法、基于神经网络的方法等。无论采用哪类方法,都需要计算两条航迹之间的相似程度,通过比较相似度,选取适当的判断准则进行相关。

由于传感器测量误差、目标分布情况、目标运动规律及数据处理方法等因素的影响,特别是当系统包含有较大的导航、传感器校准及转换和延迟误差时,在航迹关联判决中存在着较大的模糊性,基于统计数学的方法有时会显得力不从心,而这种模糊性则可以用模糊数学的隶属度函数来表示,也就是说,可使用隶属度概念来描述两个航迹的相似程度。

本文即采用基于模糊数学的航迹关联方法,采取目标批量处理的方式,以其中一部雷达的源航迹作为基准航迹,其他雷达的源航迹分别与基准航迹相关联,使用正态型分布进行隶属度函数计算,利用高斯密度公式进行确认门内待关联源航迹的选择和似然值的计算。

2 部分代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %generate data of target trajectory %Writed by Liangqun Li  %Date:2006.4.21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clear all n=50;                                                    %采样次数 T=1;                                                     %T为采样间隔 MC_number=10;                                            %monte carlos run times target_position=[1.5 0.5 1.5  0.1];                      %目标的起始位置和速度                    data_measurement1=zeros(2,n);                            %data_measurement观测值矩阵,data_measurement1实际位置矩阵     Q=[0.0004 0;0 0.0004]; Qdelta=sqrt(Q(1,1)); data_measurement1(:,1,1)=target_position(1); data_measurement1(:,2,1)=target_position(3); for i=2:n         if i~=1             data_measurement1(1,i)=data_measurement1(1,1)+T*(i-1)*target_position(2)+rand(1)*Qdelta;                        data_measurement1(2,i)=data_measurement1(2,1)+T*(i-1)*target_position(4)+rand(1)*Qdelta;   %实际位置 不考虑速度         end end plot(data_measurement1(1,:),data_measurement1(2,:),'-'); axis([0 30 1 7])

3 仿真结果

4 参考文献

[1]宁倩慧, 闫帅, 刘莉,等. 基于JPDA算法的多机动目标航迹跟踪研究[J]. 测试科学与仪器:英文版, 2016.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


相关文章
|
11天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
145 80
|
4天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
7天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
3天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
2天前
|
算法
经典航迹关联算法
经典航迹关联算法,包括加权关联,序贯关联,模糊关联,以及小波处理后性能对比仿真
16 4
|
8天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
2天前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。
|
16天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
1天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
1天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。

热门文章

最新文章