【航迹关联】基于NNDA、PDA、JPDA三种算法实现航迹关联附matlab代码

简介: 【航迹关联】基于NNDA、PDA、JPDA三种算法实现航迹关联附matlab代码

1 简介

航迹融合处于信息融合系统JDL /DFS 五级功能模型的第二级,属于探测目标的位置级融合,目前该技术已在空、海战场监视系统中得到广泛的常态化值勤应用。航迹融合的主要任务之一,就是将源于同一目标的多条传感器航迹融合成为单一的、更精确的和更可信的系统航迹。在实际工作运行中,由于各雷达探测结果存在着系统误差,使得一个真实目标会产生多条位置“平行”或“交叉”的航迹。因此,在进行航迹融合处理时,首先需要进行系统误差校正和时空配准等数据预处理工作。系统误差校正的方法有标定、瞄星、校飞等,一个正常运转的系统,必然需要对各传感器信息进行校正处理,然而随着使用过程或时间的推移,受多种因素影响,系统误差有可能重新生长,或者也会出现系统误差校正不彻底,存在系统误差“残差”的现象。当区域内目标间距较大,运动状态互不一 致时,航迹融合处理过程具有一定的“容错”能力,可以解决系统误差残差问题带来的影响,然而,当雷达的系统误差残差相比于目标间距已无法再被忽略时,例如多架飞机或多艘舰船联合编队运动时,目标间距较小,目标运动趋势相似,此时则会容易出现航迹关联错误的现象。

航迹融合中非常重要的一步就是如何判断来自不同传感器的两条航迹是否代表同一个目标,也就是航迹关联问题。用于航迹关联的算法有: 基于统计数学的方法、基于模糊数学的方法、基于灰色理论的方法、基于神经网络的方法等。无论采用哪类方法,都需要计算两条航迹之间的相似程度,通过比较相似度,选取适当的判断准则进行相关。

由于传感器测量误差、目标分布情况、目标运动规律及数据处理方法等因素的影响,特别是当系统包含有较大的导航、传感器校准及转换和延迟误差时,在航迹关联判决中存在着较大的模糊性,基于统计数学的方法有时会显得力不从心,而这种模糊性则可以用模糊数学的隶属度函数来表示,也就是说,可使用隶属度概念来描述两个航迹的相似程度。

本文即采用基于模糊数学的航迹关联方法,采取目标批量处理的方式,以其中一部雷达的源航迹作为基准航迹,其他雷达的源航迹分别与基准航迹相关联,使用正态型分布进行隶属度函数计算,利用高斯密度公式进行确认门内待关联源航迹的选择和似然值的计算。

2 部分代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %generate data of target trajectory %Writed by Liangqun Li  %Date:2006.4.21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clear all n=50;                                                    %采样次数 T=1;                                                     %T为采样间隔 MC_number=10;                                            %monte carlos run times target_position=[1.5 0.5 1.5  0.1];                      %目标的起始位置和速度                    data_measurement1=zeros(2,n);                            %data_measurement观测值矩阵,data_measurement1实际位置矩阵     Q=[0.0004 0;0 0.0004]; Qdelta=sqrt(Q(1,1)); data_measurement1(:,1,1)=target_position(1); data_measurement1(:,2,1)=target_position(3); for i=2:n         if i~=1             data_measurement1(1,i)=data_measurement1(1,1)+T*(i-1)*target_position(2)+rand(1)*Qdelta;                        data_measurement1(2,i)=data_measurement1(2,1)+T*(i-1)*target_position(4)+rand(1)*Qdelta;   %实际位置 不考虑速度         end end plot(data_measurement1(1,:),data_measurement1(2,:),'-'); axis([0 30 1 7])

3 仿真结果

4 参考文献

[1]宁倩慧, 闫帅, 刘莉,等. 基于JPDA算法的多机动目标航迹跟踪研究[J]. 测试科学与仪器:英文版, 2016.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


相关文章
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
1天前
|
算法 计算机视觉
基于高斯混合模型的视频背景提取和人员跟踪算法matlab仿真
该内容是关于使用MATLAB2013B实现基于高斯混合模型(GMM)的视频背景提取和人员跟踪算法。算法通过GMM建立背景模型,新帧与模型比较,提取前景并进行人员跟踪。文章附有程序代码示例,展示从读取视频到结果显示的流程。最后,结果保存在Result.mat文件中。
|
1天前
|
资源调度 算法 块存储
m基于遗传优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
MATLAB2022a仿真实现了遗传优化的LDPC码OSD译码算法,通过自动搜索最佳偏移参数ΔΔ以提升纠错性能。该算法结合了低密度奇偶校验码和有序统计译码理论,利用遗传算法进行全局优化,避免手动调整,提高译码效率。核心程序包括编码、调制、AWGN信道模拟及软输入软输出译码等步骤,通过仿真曲线展示了不同SNR下的误码率性能。
7 1
|
1天前
|
机器学习/深度学习 算法 API
【Paddle】PCA线性代数基础 + 领域应用:人脸识别算法(1.1w字超详细:附公式、代码)
【Paddle】PCA线性代数基础 + 领域应用:人脸识别算法(1.1w字超详细:附公式、代码)
6 0
|
5天前
|
存储 算法 数据可视化
基于harris角点和RANSAC算法的图像拼接matlab仿真
本文介绍了使用MATLAB2022a进行图像拼接的流程,涉及Harris角点检测和RANSAC算法。Harris角点检测寻找图像中局部曲率变化显著的点,RANSAC则用于排除噪声和异常点,找到最佳匹配。核心程序包括自定义的Harris角点计算函数,RANSAC参数设置,以及匹配点的可视化和仿射变换矩阵计算,最终生成全景图像。
|
5天前
|
算法 Serverless
m基于遗传优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB 2022a仿真实现了遗传优化的归一化最小和(NMS)译码算法,应用于低密度奇偶校验(LDPC)码。结果显示了遗传优化的迭代过程和误码率对比。遗传算法通过选择、交叉和变异操作寻找最佳归一化因子,以提升NMS译码性能。核心程序包括迭代优化、目标函数计算及性能绘图。最终,展示了SNR与误码率的关系,并保存了关键数据。
13 1
|
5天前
|
算法 关系型数据库 C语言
卡尔曼滤波简介+ 算法实现代码(转)
卡尔曼滤波简介+ 算法实现代码(转)
17 4
|
6天前
|
数据安全/隐私保护
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
6天前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章