Flink 任务 Jackson 解析 JSON 使用不当引发的反压问题

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: 背景最近业务方反馈线上一个 topic 的数据延迟比较大,然后我查看了这个 topic 的数据是由一个 Flink 任务产生的,于是就找到了这个任务开始排查问题,发现这个任务是一个非常简单的任务,大致的逻辑是 kafka source -> flatmap -> filter -> map -> sink kafka.中间没有复杂的操作,我在本地写了一个简单的程序模拟线上的任务.方便大家理解, 任务的 DAG 如下图所示

背景


最近业务方反馈线上一个 topic 的数据延迟比较大,然后我查看了这个 topic 的数据是由一个 Flink 任务产生的,于是就找到了这个任务开始排查问题,发现这个任务是一个非常简单的任务,大致的逻辑是 kafka source -> flatmap -> filter -> map -> sink kafka.中间没有复杂的操作,我在本地写了一个简单的程序模拟线上的任务.方便大家理解, 任务的 DAG 如下图所示



image-20210827230429171


线上任务 source 的并行度设置的是 80 flatmap filter map 的并行度也是 80 所以和 source 都 chain 在一起,两个 sink 的并行度设置的都是 30,我这里本地就设置成 8 和 3 了.


排查过程

因为反馈说是下游 topic 的数据有延迟,我的第一反应是看任务是否有反压,通过 Flink 的 UI 上的 BackPressure 发现任务并没有反压,然后查看了第一个 operator 输入数据量的 QPS 大概是 50w/s 经过 filter 之后输出数据量的 QPS 是 15w/s 左右,然后查看了 kafka 的监控发现写入的 QPS 也是 15w/s ,这就说明确实不是因为写入 kafka 慢引起的反压,因为你产生了多少我就写入了多少,但是最终的数据有延迟,那就说明任务反压的地方是在第一个 operator 中的某个算子上,但是因为 operator chain 把所有的算子都 chain 在一起,不太方便定位反压的位置.于是我就在 flatmap 后面调用 disableChaining 打断了 operator chain.这个时候任务的 DAG 变成了下面这样.



image-20210827231856263


这个时候在查看 source 的 BackPressure 显示都是 high 状态,说明反压出现在 flatmap 算子,刚开始猜测可能是因为 flatmap 的时候数据量会暴增导致处理不过来了,所以就尝试增大了 flatmap 算子的并行度,但是发现并没有明显的效果,任务反压还是比较严重,哪怕是增大并行度到 500 效果都不是很明显,这就说明跟 flatmap 的数据量大小及并行度没有关系,没办法只能看代码了,大概看了下任务逻辑,代码非常简单,不应该会出现性能问题,唯一不足的就是代码逻辑不够简洁,略显繁琐,且有重复的逻辑,其实 filter 和 map 算子是没有必要的,优化了这些地方之后本以为就能解决反压问题,可是结果还是出现了反压.



image-20210829110127054


这就有点奇怪了,代码中没有复杂的逻辑,也没有和第三方交互,按道理来说不应该会有性能问题,再次查看代码发现代码里面解析 JSON 数据用的是 Jackson 类库,Jackson 的稳定性和性能肯定是没有问题的,在国外应用比较广泛,比如 springboot 包括 Flink 这种大型的框架内默认都使用 Jackson 更加能说明这一点,国内使用 Fastjson 类库会比较多一点.然后仔细看代码发现使用 Jackson 的时候需要实例化 ObjectMapper 对象,但是代码里面是在 flatmap 方法里面实例化 ObjectMapper 对象的,也就是说每来一条数据都需要实例化一次 ObjectMapper 对象,这显然是不合理的.刚开始没有发现是因为解析 json 被封装在一个方法里面,没有进到方法里面来看,那么究竟是不是因为 ObjectMapper 实例化影响到性能呢? 其实非常简单,我们可以在本地测试一下提前实例化好 ObjectMapper 和每条数据都实例化一遍的差别就能得到答案.测试代码如下


public static long a(String json) throws IOException {
        long start = System.currentTimeMillis();
        for (int i = 0; i < 100000; i ++) {
            ObjectMapper objectMapper = new ObjectMapper();
            objectMapper.readValue(json, List.class);
        }
        long end = System.currentTimeMillis();
        return end - start;
    }
    public static long b(String json) throws IOException {
        long start = System.currentTimeMillis();
        ObjectMapper objectMapper = new ObjectMapper();
        for (int i = 0; i < 100000; i ++) {
            objectMapper.readValue(json, List.class);
        }
        long end = System.currentTimeMillis();
        return end - start;
    }
    String json = "[{\"name\":\"JasonLee\",\"age\":18},{\"name\":\"JasonLee1\",\"age\":18}]";
    System.out.println(a(json));
    System.out.println(b(json));
    // 打印的结果是:
    68425
    316


从上面测试的结果可以发现,这两种写法性能相差甚大,耗时完全不在一个量级上,也就是说 jackson 的 ObjectMapper 实例化是一个非常耗时的过程,这就能解释任务为什么会在 flatmap 算子出现反压了.


解决


既然知道了反压的原因,那解决办法就非常的简单了,把 ObjectMapper 对象的实例化放在 open 方法里面即可,类似于创建 JDBC 连接,让每个 task 初始化一次 ObjectMapper 对象,然后在 flatmap 方法里面直接使用.这样就不用每条数据都初始化一次.


SingleOutputStreamOperator<JasonEntity> filter = jasonEntityDataStreamSource.flatMap(new RichFlatMapFunction<JasonEntity, JasonEntity>() {
    private ObjectMapper objectMapper = null;
    @Override
    public void open(Configuration parameters) throws Exception {
        objectMapper = new ObjectMapper();
    }
    @Override
    public void flatMap(JasonEntity jasonEntity, Collector<JasonEntity> collector) throws Exception {
        List<Map<String, String>> list = objectMapper.readValue("[\n" +
                "  {\"name\":\"JasonLee\",\"age\":18},\n" +
                "  {\"name\":\"JasonLee1\",\"age\":18}\n" +
                "]", List.class);
        System.out.println(list.toString());
        collector.collect(jasonEntity);
    }
}).disableChaining();


当然除了改成上面的写法外,还可以直接用 fastjson 来解析 JSON 数据,jackson 和 fastjson 的性能是差不多的,网上也有很多这两者对比的文章,感兴趣的也可以自己测试一下.这里就不做对比测试了.


最后把修改后的代码提交到线上后发现没有出现反压,下游的数据自然也不会有延迟了.其实这是一个非常小的问题,或者说是一个小细节吧,但是却能带来严重的后果.所以我们在写代码的时候还是要多注意细节,尽可能提高程序的性能.

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
4月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
173 3
|
2月前
|
存储 物联网 大数据
探索阿里云 Flink 物化表:原理、优势与应用场景全解析
阿里云Flink的物化表是流批一体化平台中的关键特性,支持低延迟实时更新、灵活查询性能、无缝流批处理和高容错性。它广泛应用于电商、物联网和金融等领域,助力企业高效处理实时数据,提升业务决策能力。实践案例表明,物化表显著提高了交易欺诈损失率的控制和信贷审批效率,推动企业在数字化转型中取得竞争优势。
120 16
|
6月前
|
JSON API 网络架构
【Azure 媒体服务】使用编码预设文件(Preset.json)来自定义编码任务 -- 创建视频缩略图
【Azure 媒体服务】使用编码预设文件(Preset.json)来自定义编码任务 -- 创建视频缩略图
|
4月前
|
JSON JavaScript Java
在Java中处理JSON数据:Jackson与Gson库比较
本文介绍了JSON数据交换格式及其在Java中的应用,重点探讨了两个强大的JSON处理库——Jackson和Gson。文章详细讲解了Jackson库的核心功能,包括数据绑定、流式API和树模型,并通过示例演示了如何使用Jackson进行JSON解析和生成。最后,作者分享了一些实用的代码片段和使用技巧,帮助读者更好地理解和应用这些工具。
368 0
在Java中处理JSON数据:Jackson与Gson库比较
|
6月前
|
JSON Java API
Jackson:SpringBoot中的JSON王者,优雅掌控数据之道
【8月更文挑战第29天】在Java的广阔生态中,SpringBoot以其“约定优于配置”的理念,极大地简化了企业级应用的开发流程。而在SpringBoot处理HTTP请求与响应的过程中,JSON数据的序列化和反序列化是不可或缺的一环。在众多JSON处理库中,Jackson凭借其高效、灵活和强大的特性,成为了SpringBoot中处理JSON数据的首选。今天,就让我们一起深入探讨Jackson如何在SpringBoot中优雅地控制JSON数据。
208 0
|
8月前
|
JSON fastjson 数据格式
使用jackson和fastjson实现list与json互转
使用jackson和fastjson实现list与json互转
|
8月前
|
JSON 关系型数据库 MySQL
实时计算 Flink版产品使用问题之在使用CDAS语法同步MySQL数据到Hologres时,如果开启了字段类型宽容模式,MySQL中的JSON类型会被转换为什么
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
8月前
|
JSON 资源调度 Kubernetes
实时计算 Flink版操作报错合集之解析JSON数组时,遇到报错,该怎么解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
121 0
|
1月前
|
JSON 前端开发 搜索推荐
关于商品详情 API 接口 JSON 格式返回数据解析的示例
本文介绍商品详情API接口返回的JSON数据解析。最外层为`product`对象,包含商品基本信息(如id、name、price)、分类信息(category)、图片(images)、属性(attributes)、用户评价(reviews)、库存(stock)和卖家信息(seller)。每个字段详细描述了商品的不同方面,帮助开发者准确提取和展示数据。具体结构和字段含义需结合实际业务需求和API文档理解。
|
29天前
|
JSON 缓存 API
解析电商商品详情API接口系列,json数据示例参考
电商商品详情API接口是电商平台的重要组成部分,提供了商品的详细信息,支持用户进行商品浏览和购买决策。通过合理的API设计和优化,可以提升系统性能和用户体验。希望本文的解析和示例能够为开发者提供参考,帮助构建高效、可靠的电商系统。
39 12

热门文章

最新文章

推荐镜像

更多