2019年Reddit机器学习17个高赞项目:AI德扑大师、StyleGAN等上榜

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: 本文是Medium网友整理的2019年Reddit机器学习板块热门高赞项目资源汇总,既有Facebook、英伟达等大厂的作品,也有网友自制的有趣小尝试,共17个项目,按热度高低排序,一起看看吧!

微信图片_20220107192135.jpg


本贴总结了2019年Reddit机器学习板块中分享的17个令人印象深刻的项目、研究、demo以及更多相关内容。其中既包括AI大厂的高光项目(GPT-2、StyleGAN等),也有小团队甚至个人做出的有趣的东西。希望小伙伴们能在这些精选资源中获得自己的收获。

 

1,少量无监督的图像到图像翻译(913⬆️)

 

“本项目的灵感来自人类自身。人可以从少量示例中获取新对象的本质,并进行概括。本项目实现了一种无监督模式的图像到图像转换算法,在测试时仅由几个示例图像加以确定,就能用于之前未见过的新目标类。

 

资源地址:https://github.com/NVlabs/FUNIT

 

2,二次元小姐姐生成器(521⬆️)


微信图片_20220107192132.jpg

 

作者提出了一种能够绘制漫画的人工神经网络。Waifu可选择喜欢的角色,并在此基础上生成喜欢的动漫。

 

资源地址:https://waifulabs.com/

 

3,最大的机器学习数据集列表(499⬆️)

 

本列表收录了一系列可以用于机器学习实验的机器学习数据集。这种资源肯定可以减少在线查找数据集所需的时间。数据集按任务类别/领域进行细分,包括:计算机视觉,自然语言处理,自动驾驶,质量检查,音频、医疗应用,还可以选择按许可类型排序。

 

资源地址:https://www.datasetlist.com/

 

4,数据集:480000条“烂番茄”影评资源库,已标记为新鲜/烂(464⬆️)

 

作者在互联网上收集大量的“烂番茄”网站的影评,这些数据在NLP任务中可能非常有用。

 

资源地址:

https://github.com/nicolas-gervais/6-607-Algorithms-for-Big-Data-Analysis/blob/master/scraping%20all%20critic%20reviews%20from%20rotten%20tomatoes

 

数据集可在Google云盘上下载

https://drive.google.com/file/d/1N8WCMci_jpDHwCVgSED-B9yts-q9_Bb5/view

 

5,使用ML创建“猫门”,当猫嘴里有猎物时会自动锁门(464⬆️)

 

这篇文章是关于使用机器学习创建的猫门。视频中的讲者创建了一个“猫门”,如果猫的嘴里有东西,就会自动锁门15分钟。这能防止猫咪将死动物带入房屋。作者将摄像头连接到猫的门上,然后应用机器学习来检查猫的嘴里是否有东西。


QQ图片20220107192255.png

查看原视频链接


视频:https://youtu.be/1A-Nf3QIJjM

 

6,基于神经点的图形(415⬆️)

 

作者提出了一种基于点的新方法来对复杂场景进行建模。使用原始点云作为场景的几何表示。然后用可学习的神经描述符扩充每个点。神经描述符对局部几何形状和外观进行编码。通过将点云进行栅格化,从新视点传递到深度渲染网络中,获得新的场景视图。

 

论文:https://arxiv.org/abs/1906.08240

 

7,AdaBound:一种基于PyTorch实现的优化器,训练速度堪比Adam,质量堪比SGD(ICLR 2019)

 

AdaBound是一种优化程序,旨在提高不可见的数据的训练速度和性能,可用PyTorch实现。

 

资源地址:https://github.com/Luolc/AdaBound

 

8,Facebook与卡内基梅隆大学联合打造德州扑克AI,在6人比赛中击败职业玩家(390⬆️)

 

“Pluribus是第一款能够在六人无限注德州扑克击败人类专家的AI,这是AI第一次在超过两个玩家的复杂游戏中击败顶级人类玩家。

 

微信图片_20220107192129.gif

Facebook博客:


https://ai.facebook.com/blog/pluribus-first-ai-to-beat-pros-in-6-player-poker/

 

9,各种ML模型的NumPy实现(388⬆️)

 

作者在项目页面上:“ numpy-ml是越来越多的专门用NumPy和Python标准库编写的机器学习模型、算法和工具的集合。”

 

资源:https://github.com/ddbourgin/numpy-ml


10、17种深度强化学习算法的PyTorch实现(388⬆️)

 

作者列出了17种深度强化学习算法的PyTorch实现。包括DQN,DQN-HER,DoubleDQN,REINFORCE,DDPG,DDPG-HER,PPO,SAC,离散SAC,A3C,A2C等。

 

资源:


https://github.com/p-christ/Deep-Reinforcement-Learning-Algorithms-with-PyTorch

 

11、100万张AI生成的假脸(373⬆️)

 

用NVIDIA的StyleGAN生成的100万张假脸。这些脸看起来与真人完全一样。

 

资源:https://archive.org/details/1mFakeFaces

 

12,教神经网络开车(358⬆️)

 

“本项目教神经网络如何驾驶汽车。这个网络很简单,具有固定数量的隐藏节点(没有NEAT),没有偏差。然而,经过短短几代的学习,它成功学会了快速安全地驾驶汽车。“该网络通过随机突变后成功学会了开赛车。”

 

视频:https://youtu.be/wL7tSgUpy8w

 

13,一个简单库,将机器学习模型转换为本地代码(Python / C / Java)(345⬆️)


m2cgen(模型2代码生成器)是一个轻量级库,可以提供简便方法,将经过训练的统计模型转换为本地代码。(支持Python,C,Java,Go,JavaScript,VisualBasic,C#)。”

 

地址:https://github.com/BayesWitnesses/m2cgen/

 

当前支持的模型如下:


微信图片_20220107192126.jpg


14,探索神经网络的损失情况(339⬆️)

 

摘自作者的帖子:“该帖子是为了在神经网络的损失平面中找到不同的模式。通常,损失最小值处就像是一个坑,其周围是随机分布的丘陵和山脉,但也存在更有意义的坑,如下图所示。

 

资源:https://github.com/universome/loss-patterns

论文:https://arxiv.org/abs/1910.03867

 

微信图片_20220107192123.jpg

“结果表明,我们几乎可以找到自己喜欢的任何损失的最小值。有趣的是,结果的横向模式对于测试集也仍然有效,也就是说,这是一种很可能在整个数据分布上都有效的属性。”

 

15,OpenAI基于GPT-2的Reddit 机器人(343⬆️)

 

本项目构建了一个由OpenAI的GPT-2驱动的Reddit机器人。相关代码可以在下面的资源中找到。

 

资源:https://github.com/shevisjohnson/gpt-2_bot

 

16,Super SloMo:一个卷积神经网络,可将任何视频转换为slomo视频(332⬆️)

 

微信图片_20220107192120.gif


论文:https://people.cs.umass.edu/~hzjiang/projects/superslomo/

代码:https://github.com/avinashpaliwal/Super-SloMo

 

17,NLP的预训练模型库:Bert,GPT,GPT-2,Transformer-XL,XLNet,XLM(306⬆️)

 

这是用于NLP的预训练Transformer模型的开源库。它具有六种架构,分别是:

 

  • Google的BERT
  • OpenAI的GPT和GPT-2
  • Google / CMU的Transformer-XL和XLNet
  • Facebook的XLM

 

该库为这些架构提供了27种预训练的模型权重。

 

资源:

https://github.com/huggingface/transformers


原文链接:

https://heartbeat.fritz.ai/best-of-machine-learning-in-2019-reddit-edition-5fbb676a808


相关文章
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
MMAudio:开源 AI 音频合成项目,根据视频或文本生成同步的音频
MMAudio 是一个基于多模态联合训练的高质量 AI 音频合成项目,能够根据视频内容或文本描述生成同步的音频。该项目适用于影视制作、游戏开发、虚拟现实等多种场景,提升用户体验。
65 7
MMAudio:开源 AI 音频合成项目,根据视频或文本生成同步的音频
|
22天前
|
存储 人工智能 数据库
Codel:AI代理工具,支持在终端、浏览器、编辑器执行复杂任务和项目
Codel是一款全自主AI代理工具,支持在终端、浏览器和编辑器中执行复杂任务和项目。它运行在沙盒化的Docker环境中,具备自主操作能力,内置浏览器和文本编辑器,所有操作记录存储于PostgreSQL数据库。Codel能够自动完成复杂任务,如创建项目结构、进行网络搜索等,适用于自动化编程、研究与开发、教育与培训以及数据科学与分析等多个领域。
59 11
Codel:AI代理工具,支持在终端、浏览器、编辑器执行复杂任务和项目
|
1月前
|
人工智能 物联网 Shell
今日 AI 开源|共 12 项|开源的DIY健康追踪项目,基于低成本的智能戒指构建私人的健康监测应用
本文介绍了多个开源项目,涵盖了从量子计算错误纠正到视频生成和编辑的广泛应用领域。这些项目展示了AI技术在不同领域的创新和应用潜力。
179 10
今日 AI 开源|共 12 项|开源的DIY健康追踪项目,基于低成本的智能戒指构建私人的健康监测应用
|
1月前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法。本文介绍 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,同时提供 Python 实现示例,强调其在确保项目性能和用户体验方面的关键作用。
36 6
|
28天前
|
存储 人工智能 缓存
官宣开源 阿里云与清华大学共建AI大模型推理项目Mooncake
近日,清华大学和研究组织9#AISoft,联合以阿里云为代表的多家企业和研究机构,正式开源大模型资源池化项目 Mooncake。
|
29天前
|
存储 人工智能 缓存
官宣开源|阿里云与清华大学共建AI大模型推理项目Mooncake
2024年6月,国内优质大模型应用月之暗面Kimi与清华大学MADSys实验室(Machine Learning, AI, Big Data Systems Lab)联合发布了以 KVCache 为中心的大模型推理架构 Mooncake。
|
1月前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段。本文介绍了 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,强调了样本量、随机性和时间因素的重要性,并展示了 Python 在 A/B 测试中的具体应用实例。
30 1
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之解释性AI与可解释性机器学习
随着人工智能技术的广泛应用,机器学习模型越来越多地被用于决策过程。然而,这些模型,尤其是深度学习模型,通常被视为“黑箱”,难以理解其背后的决策逻辑。解释性AI(Explainable AI, XAI)和可解释性机器学习(Interpretable Machine Learning, IML)旨在解决这个问题,使模型的决策过程透明、可信。
65 2
|
1月前
|
机器学习/深度学习 人工智能 自动驾驶
揭秘AI:机器学习如何改变我们的世界
在这篇文章中,我们将深入探讨机器学习如何改变我们的世界。从自动驾驶汽车到智能医疗诊断,机器学习正在逐步渗透到我们生活的每一个角落。我们将通过实例和代码示例,揭示机器学习的工作原理,以及它如何影响我们的生活。无论你是科技爱好者,还是对人工智能充满好奇的普通读者,这篇文章都将为你打开一扇新的大门,带你走进机器学习的世界。
34 0
|
1月前
|
机器学习/深度学习 数据采集 人工智能
自动化测试的未来:AI与机器学习的融合之路
【10月更文挑战第41天】随着技术的快速发展,软件测试领域正经历一场由人工智能和机器学习驱动的革命。本文将探讨这一趋势如何改变测试流程、提高测试效率以及未来可能带来的挑战和机遇。我们将通过具体案例分析,揭示AI和ML在自动化测试中的应用现状及其潜力。
47 0