2019年Reddit机器学习17个高赞项目:AI德扑大师、StyleGAN等上榜

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
简介: 本文是Medium网友整理的2019年Reddit机器学习板块热门高赞项目资源汇总,既有Facebook、英伟达等大厂的作品,也有网友自制的有趣小尝试,共17个项目,按热度高低排序,一起看看吧!

微信图片_20220107192135.jpg


本贴总结了2019年Reddit机器学习板块中分享的17个令人印象深刻的项目、研究、demo以及更多相关内容。其中既包括AI大厂的高光项目(GPT-2、StyleGAN等),也有小团队甚至个人做出的有趣的东西。希望小伙伴们能在这些精选资源中获得自己的收获。

 

1,少量无监督的图像到图像翻译(913⬆️)

 

“本项目的灵感来自人类自身。人可以从少量示例中获取新对象的本质,并进行概括。本项目实现了一种无监督模式的图像到图像转换算法,在测试时仅由几个示例图像加以确定,就能用于之前未见过的新目标类。

 

资源地址:https://github.com/NVlabs/FUNIT

 

2,二次元小姐姐生成器(521⬆️)


微信图片_20220107192132.jpg

 

作者提出了一种能够绘制漫画的人工神经网络。Waifu可选择喜欢的角色,并在此基础上生成喜欢的动漫。

 

资源地址:https://waifulabs.com/

 

3,最大的机器学习数据集列表(499⬆️)

 

本列表收录了一系列可以用于机器学习实验的机器学习数据集。这种资源肯定可以减少在线查找数据集所需的时间。数据集按任务类别/领域进行细分,包括:计算机视觉,自然语言处理,自动驾驶,质量检查,音频、医疗应用,还可以选择按许可类型排序。

 

资源地址:https://www.datasetlist.com/

 

4,数据集:480000条“烂番茄”影评资源库,已标记为新鲜/烂(464⬆️)

 

作者在互联网上收集大量的“烂番茄”网站的影评,这些数据在NLP任务中可能非常有用。

 

资源地址:

https://github.com/nicolas-gervais/6-607-Algorithms-for-Big-Data-Analysis/blob/master/scraping%20all%20critic%20reviews%20from%20rotten%20tomatoes

 

数据集可在Google云盘上下载

https://drive.google.com/file/d/1N8WCMci_jpDHwCVgSED-B9yts-q9_Bb5/view

 

5,使用ML创建“猫门”,当猫嘴里有猎物时会自动锁门(464⬆️)

 

这篇文章是关于使用机器学习创建的猫门。视频中的讲者创建了一个“猫门”,如果猫的嘴里有东西,就会自动锁门15分钟。这能防止猫咪将死动物带入房屋。作者将摄像头连接到猫的门上,然后应用机器学习来检查猫的嘴里是否有东西。


QQ图片20220107192255.png

查看原视频链接


视频:https://youtu.be/1A-Nf3QIJjM

 

6,基于神经点的图形(415⬆️)

 

作者提出了一种基于点的新方法来对复杂场景进行建模。使用原始点云作为场景的几何表示。然后用可学习的神经描述符扩充每个点。神经描述符对局部几何形状和外观进行编码。通过将点云进行栅格化,从新视点传递到深度渲染网络中,获得新的场景视图。

 

论文:https://arxiv.org/abs/1906.08240

 

7,AdaBound:一种基于PyTorch实现的优化器,训练速度堪比Adam,质量堪比SGD(ICLR 2019)

 

AdaBound是一种优化程序,旨在提高不可见的数据的训练速度和性能,可用PyTorch实现。

 

资源地址:https://github.com/Luolc/AdaBound

 

8,Facebook与卡内基梅隆大学联合打造德州扑克AI,在6人比赛中击败职业玩家(390⬆️)

 

“Pluribus是第一款能够在六人无限注德州扑克击败人类专家的AI,这是AI第一次在超过两个玩家的复杂游戏中击败顶级人类玩家。

 

微信图片_20220107192129.gif

Facebook博客:


https://ai.facebook.com/blog/pluribus-first-ai-to-beat-pros-in-6-player-poker/

 

9,各种ML模型的NumPy实现(388⬆️)

 

作者在项目页面上:“ numpy-ml是越来越多的专门用NumPy和Python标准库编写的机器学习模型、算法和工具的集合。”

 

资源:https://github.com/ddbourgin/numpy-ml


10、17种深度强化学习算法的PyTorch实现(388⬆️)

 

作者列出了17种深度强化学习算法的PyTorch实现。包括DQN,DQN-HER,DoubleDQN,REINFORCE,DDPG,DDPG-HER,PPO,SAC,离散SAC,A3C,A2C等。

 

资源:


https://github.com/p-christ/Deep-Reinforcement-Learning-Algorithms-with-PyTorch

 

11、100万张AI生成的假脸(373⬆️)

 

用NVIDIA的StyleGAN生成的100万张假脸。这些脸看起来与真人完全一样。

 

资源:https://archive.org/details/1mFakeFaces

 

12,教神经网络开车(358⬆️)

 

“本项目教神经网络如何驾驶汽车。这个网络很简单,具有固定数量的隐藏节点(没有NEAT),没有偏差。然而,经过短短几代的学习,它成功学会了快速安全地驾驶汽车。“该网络通过随机突变后成功学会了开赛车。”

 

视频:https://youtu.be/wL7tSgUpy8w

 

13,一个简单库,将机器学习模型转换为本地代码(Python / C / Java)(345⬆️)


m2cgen(模型2代码生成器)是一个轻量级库,可以提供简便方法,将经过训练的统计模型转换为本地代码。(支持Python,C,Java,Go,JavaScript,VisualBasic,C#)。”

 

地址:https://github.com/BayesWitnesses/m2cgen/

 

当前支持的模型如下:


微信图片_20220107192126.jpg


14,探索神经网络的损失情况(339⬆️)

 

摘自作者的帖子:“该帖子是为了在神经网络的损失平面中找到不同的模式。通常,损失最小值处就像是一个坑,其周围是随机分布的丘陵和山脉,但也存在更有意义的坑,如下图所示。

 

资源:https://github.com/universome/loss-patterns

论文:https://arxiv.org/abs/1910.03867

 

微信图片_20220107192123.jpg

“结果表明,我们几乎可以找到自己喜欢的任何损失的最小值。有趣的是,结果的横向模式对于测试集也仍然有效,也就是说,这是一种很可能在整个数据分布上都有效的属性。”

 

15,OpenAI基于GPT-2的Reddit 机器人(343⬆️)

 

本项目构建了一个由OpenAI的GPT-2驱动的Reddit机器人。相关代码可以在下面的资源中找到。

 

资源:https://github.com/shevisjohnson/gpt-2_bot

 

16,Super SloMo:一个卷积神经网络,可将任何视频转换为slomo视频(332⬆️)

 

微信图片_20220107192120.gif


论文:https://people.cs.umass.edu/~hzjiang/projects/superslomo/

代码:https://github.com/avinashpaliwal/Super-SloMo

 

17,NLP的预训练模型库:Bert,GPT,GPT-2,Transformer-XL,XLNet,XLM(306⬆️)

 

这是用于NLP的预训练Transformer模型的开源库。它具有六种架构,分别是:

 

  • Google的BERT
  • OpenAI的GPT和GPT-2
  • Google / CMU的Transformer-XL和XLNet
  • Facebook的XLM

 

该库为这些架构提供了27种预训练的模型权重。

 

资源:

https://github.com/huggingface/transformers


原文链接:

https://heartbeat.fritz.ai/best-of-machine-learning-in-2019-reddit-edition-5fbb676a808


相关文章
|
7天前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
35 3
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之解释性AI与可解释性机器学习
随着人工智能技术的广泛应用,机器学习模型越来越多地被用于决策过程。然而,这些模型,尤其是深度学习模型,通常被视为“黑箱”,难以理解其背后的决策逻辑。解释性AI(Explainable AI, XAI)和可解释性机器学习(Interpretable Machine Learning, IML)旨在解决这个问题,使模型的决策过程透明、可信。
13 2
|
2天前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI:机器学习的魔法与代码
【10月更文挑战第33天】本文将带你走进AI的世界,了解机器学习的原理和应用。我们将通过Python代码示例,展示如何实现一个简单的线性回归模型。无论你是AI新手还是有经验的开发者,这篇文章都会给你带来新的启示。让我们一起探索AI的奥秘吧!
|
4天前
|
存储 人工智能 文字识别
AI与OCR:数字档案馆图像扫描与文字识别技术实现与项目案例
本文介绍了纸质档案数字化的技术流程,包括高精度扫描、图像预处理、自动边界检测与切割、文字与图片分离抽取、档案识别与文本提取,以及识别结果的自动保存。通过去噪、增强对比度、校正倾斜等预处理技术,提高图像质量,确保OCR识别的准确性。平台还支持多字体识别、批量处理和结构化存储,实现了高效、准确的档案数字化。具体应用案例显示,该技术在江西省某地质资料档案馆中显著提升了档案管理的效率和质量。
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
22 2
|
11天前
|
人工智能 安全 网络安全
揭秘!大模型私有化部署的全方位安全攻略与优化秘籍,让你的AI项目稳如磐石,数据安全无忧!
【10月更文挑战第24天】本文探讨了大模型私有化部署的安全性考量与优化策略,涵盖数据安全、防火墙配置、性能优化、容器化部署、模型更新和数据备份等方面,提供了实用的示例代码,旨在为企业提供全面的技术参考。
37 6
|
10天前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
38 1
|
13天前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI的魔法:机器学习如何改变我们的世界
【10月更文挑战第22天】在这篇文章中,我们将深入探讨机器学习的奥秘,揭示它是如何在我们的日常生活中扮演着越来越重要的角色。从简单的数据分类到复杂的预测模型,机器学习的应用已经渗透到各个领域。我们将通过实例和代码示例,展示机器学习的基本概念、工作原理以及它如何改变我们的生活。无论你是科技爱好者还是对AI充满好奇的初学者,这篇文章都将为你打开一扇通往未来的大门。
|
8天前
|
人工智能 Anolis 开发者
|
6月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
235 14

热门文章

最新文章