大数据为什么那么火?一文带你了解Spark与SQL结合的力量

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:   Spark是一种大规模、快速计算的集群平台,本头条号试图通过学习Spark官网的实战演练笔记提升笔者实操能力以及展现Spark的精彩之处。有关框架介绍和环境配置可以参考以下内容:  linux下Hadoop安装与环境配置(附详细步骤和安装包下载)  linux下Spark安装与环境配置(附详细步骤和安装包下载)

  Spark是一种大规模、快速计算的集群平台,本头条号试图通过学习Spark官网的实战演练笔记提升笔者实操能力以及展现Spark的精彩之处。有关框架介绍和环境配置可以参考以下内容:

  linux下Hadoop安装与环境配置(附详细步骤和安装包下载)

  linux下Spark安装与环境配置(附详细步骤和安装包下载)

  本文的参考配置为:Deepin 15.11、Java 1.8.0_241、Hadoop 2.10.0、Spark 2.4.4、scala 2.11.12

  一、Spark SQL入门

  Spark SQL 是 Spark 处理结构化数据的一个模块。与基础的 Spark RDD API 不同,Spark SQL 提供了查询结构化数据及计算结果等信息的接口。在内部,Spark SQL 使用这个额外的信息去执行额外的优化。有几种方式可以跟 Spark SQL 进行交互,包括 SQL 和 Dataset API。当使用相同执行引擎进行计算时,无论使用哪种 API / 语言都可以快速的计算。这种统一意味着开发人员能够在基于提供最自然的方式来表达一个给定的 transformation API 之间实现轻松的来回切换不同的。

  1.Spark Session

  Spark SQL中所有功能的入口点是SparkSession 类。要创建一个 SparkSession,仅使用 SparkSession.builder()就可以了。如果提示已创建的Warning,则代表之前有创建SparkSession,有些设置不会生效,可以通过.stop方法先停止当前SparkSession。

  2.创建DataFrames

  在一个 SparkSession中,应用程序可以从一个已经存在的 RDD,从hive表,或者从 Spark数据源中创建一个DataFrames。

  一个 Dataset 是一个分布式的数据集合 Dataset 是在 Spark 1.6 中被添加的新接口,它提供了 RDD 的优点(强类型化,能够使用强大的 lambda 函数)与Spark SQL执行引擎的优点。一个 Dataset 可以从 JVM 对象来 构造 并且使用转换功能(map,flatMap,filter,等等)。一个 DataFrame 是一个 Dataset 组成的指定列。

  3.SQL语句运行

  SparkSession 的 sql 函数可以让应用程序以编程的方式运行 SQL 查询,并将结果作为一个 DataFrame 返回。

  Spark SQL中的临时视图是session级别的,也就是会随着session的消失而消失。如果你想让一个临时视图在所有session中相互传递并且可用,直到Spark 应用退出,你可以建立一个全局的临时视图。全局的临时视图存在于系统数据库 global_temp中,我们必须加上库名去引用它,比如。SELECT * FROM global_temp.view1。

  4.创建DataSets

  Dataset 与 RDD 相似,然而,并不是使用 Java 序列化或者 Kryo 编码器来序列化用于处理或者通过网络进行传输的对象。虽然编码器和标准的序列化都负责将一个对象序列化成字节,编码器是动态生成的代码,并且使用了一种允许 Spark 去执行许多像 filtering,sorting 以及 hashing 这样的操作,不需要将字节反序列化成对象的格式。

  5.RDD互操作性

  Spark SQL 支持两种不同的方法用于转换已存在的 RDD 成为 Dataset,分别是使用反射推断Schema和以编程的方式指定Schema。

  Spark SQL 的 Scala 接口支持自动转换一个包含 case classes 的 RDD 为 DataFrame。Case class 定义了表的 Schema。Case class 的二手手游转让平台参数名使用反射读取并且成为了列名。Case class 也可以是嵌套的或者包含像 Seq 或者 Array 这样的复杂类型。这个 RDD 能够被隐式转换成一个 DataFrame 然后被注册为一个表。表可以用于后续的 SQL 语句。

  6.UDF自定义函数

  内置的DataFrames函数提供常见的聚合,例如count(),countDistinct(),avg(),max(),min()等。尽管这些函数是为DataFrames设计的,但用户不限于预定义的聚合功能,还可以创建自己的功能。

  二、数据源

  Spark SQL 支持通过 DataFrame 接口对各种 data sources(数据源)进行操作。DataFrame 可以使用 relational transformations(关系转换)操作,也可用于创建 temporary view(临时视图)。将 DataFrame 注册为 temporary view(临时视图)允许您对其数据运行 SQL 查询。本节 描述了使用 Spark Data Sources 加载和保存数据的一般方法,然后涉及可用于 built-in data sources(内置数据源)的 specific options(特定选项)。

  1.通用功能

  在最简单的形式中,默认数据源(parquet,除非另有配置 spark.sql.sources.default)将用于所有操作。还可以手动指定数据源格式。对于内置的源,你也可以使用它们的 短名称(json,parquet,jdbc,orc,libsvm,csv,text)。从任何 data source type(数据源类型)加载 DataFrames 可以使用此 syntax(语法)转换为其他类型。

  保存操作可以选择使用 SaveMode,它指定如何处理现有数据如果存在的话。重要的是这些保存模式不使用任何锁定。另外,当执行 Overwrite 时,数据将在新数据写出之前被删除。DataFrames 也可以使用 saveAsTable 命令作为 persistent tables(持久表)保存到 Hive metastore 中。对于基于文件的数据源,也可以对 output(输出)进行 bucket 和 sort 或者 partition。Bucketing 和 sorting 仅适用于 persistent tables 。

  2.Hive表

  Spark SQL 还支持读取和写入存储在 Apache Hive 中的数据。但是,由于 Hive 具有大量依赖关系,因此这些依赖关系不包含在默认 Spark 分发中。如果在类路径中找到 Hive 依赖项,Spark 将自动加载它们。请注意,这些 Hive 依赖关系也必须存在于所有工作节点上,因为它们将需要访问 Hive 序列化和反序列化库(SerDes),以访问存储在 Hive 中的数据。

  创建 Hive 表时,需要定义如何 从/向 文件系统 read/write 数据,即 “输入格式” 和 “输出格式”。您还需要定义该表如何将数据反序列化为行,或将行序列化为数据,即 “serde”。以下选项可用于指定存储格式(“serde”, “input format”, “output format”),例如,CREATE TABLE src(id int) USING hive OPTIONS(fileFormat 'parquet')。默认情况下,我们将以纯文本形式读取表格文件。请注意,Hive 存储处理程序在创建表时不受支持,您可以使用 Hive 端的存储处理程序创建一个表,并使用 Spark SQL 来读取它。

  3.JDBC数据库

  Spark SQL 还包括可以使用 JDBC 从其他数据库读取数据的数据源。此功能应优于使用 JdbcRDD。这是因为结果作为 DataFrame 返回,并且可以轻松地在 Spark SQL 中处理或与其他数据源连接。JDBC 数据源也更容易从 Java 或 Python 使用,因为它不需要用户提供 ClassTag。(请注意,这不同于 Spark SQL JDBC 服务器,允许其他应用程序使用 Spark SQL 运行查询)。

  有关Spark SQL的内容至此结束,下文将进一步对Spark Streaming即Spark流处理的内容做详细介绍。前文笔记请参考下面的链接:

  Spark大数据分布式处理实战:一文带你走进大数据世界

  学大数据一点也不难!一文带你了解RDD与共享变量(附安装教程)

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
2月前
|
SQL 存储 分布式计算
【万字长文,建议收藏】《高性能ODPS SQL章法》——用古人智慧驾驭大数据战场
本文旨在帮助非专业数据研发但是有高频ODPS使用需求的同学们(如数分、算法、产品等)能够快速上手ODPS查询优化,实现高性能查数看数,避免日常工作中因SQL任务卡壳、失败等情况造成的工作产出delay甚至集群资源稳定性问题。
896 36
【万字长文,建议收藏】《高性能ODPS SQL章法》——用古人智慧驾驭大数据战场
|
5月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
260 0
|
4月前
|
SQL JSON 分布式计算
Spark SQL架构及高级用法
Spark SQL基于Catalyst优化器与Tungsten引擎,提供高效的数据处理能力。其架构涵盖SQL解析、逻辑计划优化、物理计划生成及分布式执行,支持复杂数据类型、窗口函数与多样化聚合操作,结合自适应查询与代码生成技术,实现高性能大数据分析。
|
3月前
|
SQL 分布式计算 大数据
SparkSQL 入门指南:小白也能懂的大数据 SQL 处理神器
在大数据处理的领域,SparkSQL 是一种非常强大的工具,它可以让开发人员以 SQL 的方式处理和查询大规模数据集。SparkSQL 集成了 SQL 查询引擎和 Spark 的分布式计算引擎,使得我们可以在分布式环境下执行 SQL 查询,并能利用 Spark 的强大计算能力进行数据分析。
|
8月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
347 79
|
5月前
|
SQL 人工智能 分布式计算
别再只会写SQL了!这五个大数据趋势正在悄悄改变行业格局
别再只会写SQL了!这五个大数据趋势正在悄悄改变行业格局
78 0
|
7月前
|
SQL 关系型数据库 MySQL
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL 数据库 SQL 语句调优方法详解(2-1)
本文深入介绍 MySQL 数据库 SQL 语句调优方法。涵盖分析查询执行计划,如使用 EXPLAIN 命令及理解关键指标;优化查询语句结构,包括避免子查询、减少函数使用、合理用索引列及避免 “OR”。还介绍了索引类型知识,如 B 树索引、哈希索引等。结合与 MySQL 数据库课程设计相关文章,强调 SQL 语句调优重要性。为提升数据库性能提供实用方法,适合数据库管理员和开发人员。
|
7月前
|
关系型数据库 MySQL 大数据
大数据新视界--大数据大厂之MySQL 数据库课程设计:MySQL 数据库 SQL 语句调优的进阶策略与实际案例(2-2)
本文延续前篇,深入探讨 MySQL 数据库 SQL 语句调优进阶策略。包括优化索引使用,介绍多种索引类型及避免索引失效等;调整数据库参数,如缓冲池、连接数和日志参数;还有分区表、垂直拆分等其他优化方法。通过实际案例分析展示调优效果。回顾与数据库课程设计相关文章,强调全面认识 MySQL 数据库重要性。为读者提供综合调优指导,确保数据库高效运行。
|
2月前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
137 14
|
3月前
|
机器学习/深度学习 运维 监控
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
113 0