为什么大数据平台会回归SQL

简介: 在大数据领域,尽管非结构化数据占据了大数据平台80%以上的存储空间,结构化数据分析依然是核心任务。SQL因其广泛的应用基础和易于上手的特点成为大数据处理的主要语言,各大厂商纷纷支持SQL以提高市场竞争力。然而,SQL在处理复杂计算时表现出的性能和开发效率低下问题日益凸显,如难以充分利用现代硬件能力、复杂SQL优化困难等。为了解决这些问题,出现了像SPL这样的开源计算引擎,它通过提供更高效的开发体验和计算性能,以及对多种数据源的支持,为大数据处理带来了新的解决方案。

先说观点:因为还没找到更好的。

接下来说原因,首先来看看大数据平台都在干什么。

原因
结构化数据计算仍是重中之重
大数据平台主要是为了应对海量数据存储和分析的需求,海量数据存储的确不假,除了生产经营产生的结构化数据,还有大量音视频等非结构化数据,这部分数据很大,占用的空间也很多,有时大数据平台 80% 以上都存储着非结构化数据。不过,数据光存储还不行,只有利用起来才能产生价值,这就要进行分析了。

大数据分析要分结构化和非结构化数据两部分讨论。

结构化数据主要是企业生产经营过程中产生的业务数据,可以说是企业的核心,以往在没有大数据平台的时候企业主要或全部在使用的就是这部分数据。随着业务的不断积累,这部分数据也越来越大,传统数据库方案面临很大挑战,建设大数据平台自然要解决这部分核心数据分析问题。

有了大数据平台,给大家的想象空间也大了起来,以往无法利用的日志、图片、音视频等非结构化数据也要产生价值,这就涉及到非结构化数据分析了。相对核心业务数据分析,非结构化数据分析看起来更像是锦上添花。即使如此,非结构化数据分析并不是孤立存在,也还会伴随大量结构化数据处理。采集非结构化数据的同时,常常会伴随着采集许多相关的结构化数据,比如音视频的制作人、制作时间、所属类别、时长、…;有些非结构化数据经过处理后也会转变成结构化数据,比如网页日志中拆解出访问人 IP、访问时刻、关键搜索词等。所谓的非结构化数据分析,经常实际上是针对这些伴生而出的结构化数据。

结构化数据分析仍然是大数据平台的重中之重。而结构化数据处理技术就比较成熟了,比如我们常用的基于关系数据模型的关系数据库(SQL)。

SQL 仍是目前最广泛的结构化数据计算技术
回归 SQL 却是当前大数据计算语法的一个发展倾向。在 Hadoop 体系中,早期的 PIG Latin 已经被淘汰,而 Hive 却一直坚挺;Spark 上也在更多地使用 Spark SQL,而 Scala 反而少很多(Scala 易学难精,作为编译型语言不支持热部署也有很多不方便之处)。其它一些新的大数据计算体系一般也将 SQL 作为首选的计算语法,经过几年时间的混战,现在 SQL 又逐步拿回了主动权。

这个现象,大概有这么两个原因:

  1. 实在没什么别的好用

关系数据库过于普及,程序员对 SQL 相当熟悉,甚至思维习惯都是 SQL 式的。SQL 用来做一些常规查询也比较简单,虽然用于处理复杂的过程计算或有序运算并不方便,但其它那些替代技术也好不到哪里去,碰到 SQL 难写的运算一样要写和 UDF 相当的复杂代码,反正都是麻烦,还不如继续用 SQL。

  1. 大数据厂商的鼎力支持

大数据的技术本质是高性能,而 SQL 是性能比拼的关键阵地。比性能要面对同样的运算才有意义,过于专门和复杂的运算涉及的影响因素太多,不容易评估出大数据平台本身的能力。而 SQL 有国际标准的 TPC 系列,所有用户都看得懂,这样就有明确的可比性,厂商也会把性能优化的重点放在 SQL 上。

兼容 SQL 更利于移植
大数据平台兼容 SQL 的好处是很明显的,SQL 的应用非常广泛,会 SQL 的程序员很多,如果继续采用 SQL 则可以避免许多学习成本。支持 SQL 的前端软件也很多,使用 SQL 的大数据平台很容易融入这个现成的生态圈中。大数据平台打算替代的传统数据库也是 SQL 语法的,这样兼容性会很好,移植成本相对较低。

好了,我们说完大数据平台为什么会回归关系数据模型了。那么继续使用关系数据模型(SQL)会存在哪些问题呢?

问题
性能低
继续使用 SQL 的最大问题就是难以获得大数据计算最需要的高性能。

SQL 中缺乏一些必要的数据类型和运算定义,这使得某些高性能算法无法描述,只能寄希望于计算引擎在工程上的优化。传统商业数据库经过几十年的发展,优化经验已经相当丰富,但即使这样仍有许多场景难以被优化,理论层面的问题确实很难在工程层面解决。而新兴的大数据平台在优化方面的经验还远远不如传统数据库,算法上不占优,就只能靠集群更多的机器获得性能提升。另外,SQL 描述过程的能力不太好,不擅长指定执行路径,而想获得高性能常常需要专门优化的执行路径,这又需要增加许多特殊的修饰符来人为干预,那还不如直接用过程性语法更为直接,这也会妨碍用 SQL 写出高性能的代码。

SQL 发明之初的计算机硬件能力还比较差,要保证实用性,SQL 的设计必须适应当时的硬件条件,这就导致了 SQL 很难充分利用当代计算机的硬件能力,具体来说就是大内存、并行和集群。SQL 中的 JOIN 是按键值对应的,而大内存情况下其实可以直接用地址对应,不需要计算 HASH 值和比对,性能可以提高很多;SQL 的数据表无序,单表计算时还容易做到分段并行,多表关联运算时一般就只能事先做好固定分段,很难做到同步动态分段,这就难以根据机器的负载临时决定并行数量;对于集群运算也是这样,SQL 在理论上不区分维表和事实表,JOIN 运算简单地定义为笛卡尔积后过滤,要实现大表 JOIN 就会不可避免地产生占用大量网络资源的 HASH Shuffle 动作,在集群节点数太多时,网络传输造成的延迟会超过节点多带来的好处。

举个具体的例子,我们想在 1 亿条数据中取出前 10 名,用 SQL 写出来是这样的:

select top 10 x,y from T order by x desc

这个语句中有个 order by,严格按它执行就会涉及大排序,而排序非常慢。其实我们可以想出一个不用大排序的算法,但用 SQL 却无法描述,只能指望数据库优化器了。对于这句 SQL 描述的简单情况,很多商用数据库确实都能优化,使用不必大排序的算法,性能通常很好。但情况复杂一些,比如在每个分组中取前 10 名,要用窗口函数和子查询把 SQL 写成这样:

select * from
     (select y,*,row_number() over (partition by y order by x desc) rn from T)
where rn<=10

这时候,数据库优化器就会犯晕了,猜不出这句 SQL 的目的,只能老老实实地执行排序的逻辑(这个语句中还是有 order by 的字样),结果性能陡降。

开发效率低
不仅跑的慢,开发效率也不高,尤其在复杂计算方面,SQL 实现很繁琐。比如根据股票记录查询某只股票最长连续上涨天数,SQL(oracle)的写法如下:

select code, max(ContinuousDays) - 1
from (
    select code, NoRisingDays, count(*) ContinuousDays
    from (
        select code,
            sum(RisingFlag) over (partition by code order by day) NoRisingDays
        from (
            select code, day,
                case when price>lag(price) over (partittion by code order by day)
                    then 0 else 1 end RisingFlag
            from stock  ) ) 
    group by NoRisingDays )
group by code

用了很绕的方式实现,别说写出来,看懂都要半天。

此外,SQL 也很难实现过程计算。什么是过程性计算呢?就是一步写不出来,需要多次分步运算,特别是与数据次序相关的运算。

我们举几个例子来看:

一周内累计登录时长超过一小时的用户占比,但要除去登录时长小于 10 秒的误操作情况

信用卡在最近三个月内最长连续消费的天数分布情况,考虑实施连续消费 10 天后积分三倍的促销活动

一个月中有多少用户在 24 小时连续操作了查看商品后加入购物车并购买的的动作,有多少用户在中间步骤中放弃?

……

(为了便于理解,这些例子已经做了简化,实际情况的运算还要复杂很多)

这类过程性运算,用 SQL 写出来的难度就很大,经常还要写 UDF 才能完成。如果 SQL 写都写不出来,那么 SQL 的使用效果将大打折扣。

开发效率低导致性能低
复杂 SQL 的执行效率往往也很低,这就又回到性能的问题了,实际上开发效率和计算性能是密切相关的,很多性能问题本质上是开发效率造成。

复杂 SQL 的优化效果很差,在嵌套几层之后,数据库引擎也会晕掉,不知道如何优化。提高这类复杂运算的性能,指望计算平台的自动优化就靠不住了,根本手段还要靠写出高性能的算法。象过程式运算中还常常需要保存中间结果以复用,SQL 需要用临时表,多了 IO 操作就会影响性能,这都不是引擎优化能解决的事情,必须要去改写计算过程。

所以,本质上,提高性能还是降低开发难度。软件无法提高硬件的性能,只能想办法设计复杂度更低的算法,而如果能够快速低成本地实现这些算法,那就可以达到提高性能的目标。如果语法体系难以甚至没办法描述高性能算法,必须迫使程序员采用复杂度较高的算法,那也就很难再提高性能了。优化 SQL 运算无助于降低它的开发难度,SQL 语法体系就是那样,无论怎样优化它的性能,开发难度并不会改变,很多高性能算法仍然实现不了,也就难以实质性地提高运算性能。

编写 UDF 在许多场景时确实能提高性能,但一方面开发难度很大,另一方面这是程序员硬写的,也不能利用到 SQL 引擎的优化能力。而且经常并不能将完整运算都写成 UDF,只能使用计算平台提供的接口,仍然要在 SQL 框架使用它的数据类型,这样还是会限制高性能算法的实现。

根本的解决方法,还是要让大数据平台真地有一些更好用的语法。

解法
使用开源集算器 SPL 就可以作为 SQL 很好的替代和延伸,作为大数据平台专用的计算语言,延续 SQL 优点的同时改善其缺点。

SPL 是一款专业的开源数据计算引擎,提供了独立的计算语法,整个体系不依赖关系数据模型,因此在很多方面都有长足突破,尤其在开发效率和计算性能方面。下面来盘点一下 SPL 都有哪些特性适用于当代大数据平台。

强集成性
首先是集成性,不管 SPL 多优秀,如果与大数据平台无法结合使用也是白费。要在大数据平台中使用 SPL 其实很方便,引入 jar 包就可以使用(本身也是开源的,想怎么用就怎么用)。SPL 提供了标准 JDBC 驱动,可以直接执行 SPL 脚本,也可以调用 SPL 脚本文件。

…

Class.forName("com.esproc.jdbc.InternalDriver");

Connection conn =DriverManager.getConnection("jdbc:esproc:local://");

//PreparedStatement st = (PreparedStatement)conn.createStatement();;

//直接执行SPL脚本

//ResultSet rs = st.executeQuery("=100.new(~:baseNum,~*~:square2)");

//调用SPL脚本文件

CallableStatement st = conn.prepareCall("{call SplScript(?, ?)}");

st.setObject(1, 3000);

st.setObject(2, 5000);

ResultSet result=st.execute();

...

高效开发
敏捷语法
在结构化数据计算方面,SPL 提供了独立的计算语法和丰富的计算类库,同时支持过程计算使得复杂计算实现也很简单。前面举的计算股票最长连涨天数的例子,用 SPL 实现是这样的:
QQ_1732763782494.png

按交易日排好序,将连涨的记录分到一组,然后求最大值 -1 就是最长连续上涨天数了,完全按照自然思维实现,不用绕来绕去,比 SQL 简单不少。

再比如根据用户登录记录列出每个用户最近一次登录间隔:
QQ_1732763796561.png

支持分步的 SPL 语法完成过程计算很方便。

SPL 提供了丰富的计算类库,可以更进一步简化运算。
b91d3ff84fdd6716ddab87f3554b5012_1644977101939100.png

直观易用开发环境
同时,SPL 还提供了简洁易用的开发环境,单步执行、设置断点,所见即所得的结果预览窗口…,开发效率也更高。

7965022fe76da40110de4943bd8f6527_1644977102046100.png

多数据源支持
SPL 还提供了多样性数据源支持,多种数据源可以直接使用,相比大数据平台需要数据先“入库”才能计算,SPL 的体系更加开放。

ca458cd1687ec137ed378670152e74f7_1644977102143100.png

SPL 支持的部分数据源(仍在扩展中…)

不仅如此,SPL 还支持多种数据源混合计算,充分发挥各类数据源自身的优势,扩展大数据平台的开放性。同时,直接使用多种数据源开发实现上也更简单,进一步提升开发效率。

热切换
SPL 是解释执行的,天然支持热切换,这对 Java 体系下的大数据平台是重大利好。基于 SPL 的大数据计算逻辑编写、修改和运维都不需要重启,实时生效,开发运维更加便捷。

8a1985c0ed1f0ac2ce6fd75be106cac6_1644977101701100.png

高计算性能
前面我们说过,高性能与高开发效率本质上是一回事,基于 SPL 的简洁语法更容易写出高性能算法。同时,SPL 还提供了众多高性能数据存储和高性能算法机制,SQL 中很难实现的高性能算法及存储方案用 SPL 却可以轻松实现,而软件提高性能关键就在于算法和存储。

例如前面说过的 TopN 运算,在 SPL 中 TopN 被理解为聚合运算,这样可以将高复杂度的排序转换成低复杂度的聚合运算,而且很还能扩展应用范围。
QQ_1732763908282.png

这里的语句中没有排序字样,也不会产生大排序的动作,在全集还是分组中计算 TopN 的语法基本一致,而且都会有较高的性能。

乾学院有很多SPL实现的高性能计算案例,欢迎前往了解更多!

再多说两句,SPL 没有基于关系数据模型,而是采用了一种创新的理论体系,在理论层面就进行了创新,篇幅原因这里不再过多提及《写着简单跑得又快的数据库语言SPL》 这里有更细致一些的介绍,感兴趣的小伙伴也可以自行搜索,免费下载。

相关文章
|
18小时前
|
人工智能 自动驾驶 大数据
预告 | 阿里云邀您参加2024中国生成式AI大会上海站,马上报名
大会以“智能跃进 创造无限”为主题,设置主会场峰会、分会场研讨会及展览区,聚焦大模型、AI Infra等热点议题。阿里云智算集群产品解决方案负责人丛培岩将出席并发表《高性能智算集群设计思考与实践》主题演讲。观众报名现已开放。
|
17天前
|
存储 人工智能 弹性计算
阿里云弹性计算_加速计算专场精华概览 | 2024云栖大会回顾
2024年9月19-21日,2024云栖大会在杭州云栖小镇举行,阿里云智能集团资深技术专家、异构计算产品技术负责人王超等多位产品、技术专家,共同带来了题为《AI Infra的前沿技术与应用实践》的专场session。本次专场重点介绍了阿里云AI Infra 产品架构与技术能力,及用户如何使用阿里云灵骏产品进行AI大模型开发、训练和应用。围绕当下大模型训练和推理的技术难点,专家们分享了如何在阿里云上实现稳定、高效、经济的大模型训练,并通过多个客户案例展示了云上大模型训练的显著优势。
|
20天前
|
存储 人工智能 调度
阿里云吴结生:高性能计算持续创新,响应数据+AI时代的多元化负载需求
在数字化转型的大潮中,每家公司都在积极探索如何利用数据驱动业务增长,而AI技术的快速发展更是加速了这一进程。
|
12天前
|
并行计算 前端开发 物联网
全网首发!真·从0到1!万字长文带你入门Qwen2.5-Coder——介绍、体验、本地部署及简单微调
2024年11月12日,阿里云通义大模型团队正式开源通义千问代码模型全系列,包括6款Qwen2.5-Coder模型,每个规模包含Base和Instruct两个版本。其中32B尺寸的旗舰代码模型在多项基准评测中取得开源最佳成绩,成为全球最强开源代码模型,多项关键能力超越GPT-4o。Qwen2.5-Coder具备强大、多样和实用等优点,通过持续训练,结合源代码、文本代码混合数据及合成数据,显著提升了代码生成、推理和修复等核心任务的性能。此外,该模型还支持多种编程语言,并在人类偏好对齐方面表现出色。本文为周周的奇妙编程原创,阿里云社区首发,未经同意不得转载。
|
5天前
|
人工智能 自然语言处理 前端开发
100个降噪蓝牙耳机免费领,用通义灵码从 0 开始打造一个完整APP
打开手机,录制下你完成的代码效果,发布到你的社交媒体,前 100 个@玺哥超Carry、@通义灵码的粉丝,可以免费获得一个降噪蓝牙耳机。
2589 11
|
12天前
|
人工智能 自然语言处理 前端开发
用通义灵码,从 0 开始打造一个完整APP,无需编程经验就可以完成
通义灵码携手科技博主@玺哥超carry 打造全网第一个完整的、面向普通人的自然语言编程教程。完全使用 AI,再配合简单易懂的方法,只要你会打字,就能真正做出一个完整的应用。本教程完全免费,而且为大家准备了 100 个降噪蓝牙耳机,送给前 100 个完成的粉丝。获奖的方式非常简单,只要你跟着教程完成第一课的内容就能获得。
3341 9
|
10天前
|
人工智能 自然语言处理 前端开发
什么?!通义千问也可以在线开发应用了?!
阿里巴巴推出的通义千问,是一个超大规模语言模型,旨在高效处理信息和生成创意内容。它不仅能在创意文案、办公助理、学习助手等领域提供丰富交互体验,还支持定制化解决方案。近日,通义千问推出代码模式,基于Qwen2.5-Coder模型,用户即使不懂编程也能用自然语言生成应用,如个人简历、2048小游戏等。该模式通过预置模板和灵活的自定义选项,极大简化了应用开发过程,助力用户快速实现创意。
|
24天前
|
缓存 监控 Linux
Python 实时获取Linux服务器信息
Python 实时获取Linux服务器信息
|
6天前
|
人工智能 C++ iOS开发
ollama + qwen2.5-coder + VS Code + Continue 实现本地AI 辅助写代码
本文介绍在Apple M4 MacOS环境下搭建Ollama和qwen2.5-coder模型的过程。首先通过官网或Brew安装Ollama,然后下载qwen2.5-coder模型,可通过终端命令`ollama run qwen2.5-coder`启动模型进行测试。最后,在VS Code中安装Continue插件,并配置qwen2.5-coder模型用于代码开发辅助。
509 4
|
9天前
|
云安全 人工智能 自然语言处理