DL之RNN:人工智能为你写代码——基于TF利用RNN算法实现生成编程语言代码(C++语言)、训练&测试过程全记录(二)

简介: DL之RNN:人工智能为你写代码——基于TF利用RNN算法实现生成编程语言代码(C++语言)、训练&测试过程全记录

训练&测试过程全记录


1、训练过程


2018-10-13 18:47:32.811423:

step: 10/20000...  loss: 3.7245...  0.4903 sec/batch

step: 20/20000...  loss: 3.6450...  0.4442 sec/batch

step: 30/20000...  loss: 3.8607...  0.4482 sec/batch

step: 40/20000...  loss: 3.5700...  0.4993 sec/batch

step: 50/20000...  loss: 3.5019...  0.5444 sec/batch

step: 60/20000...  loss: 3.4688...  0.4512 sec/batch

step: 70/20000...  loss: 3.3954...  0.5244 sec/batch

step: 80/20000...  loss: 3.3532...  0.4031 sec/batch

step: 90/20000...  loss: 3.2842...  0.6517 sec/batch

step: 100/20000...  loss: 3.1934...  0.4893 sec/batch

……

step: 990/20000...  loss: 2.0868...  0.4111 sec/batch

step: 1000/20000...  loss: 2.0786...  0.4001 sec/batch

step: 1010/20000...  loss: 2.0844...  0.4352 sec/batch

step: 1020/20000...  loss: 2.1136...  0.4402 sec/batch

step: 1030/20000...  loss: 2.1023...  0.3199 sec/batch

step: 1040/20000...  loss: 2.0460...  0.4522 sec/batch

step: 1050/20000...  loss: 2.1545...  0.4432 sec/batch

step: 1060/20000...  loss: 2.1058...  0.3680 sec/batch

step: 1070/20000...  loss: 2.0850...  0.4201 sec/batch

step: 1080/20000...  loss: 2.0811...  0.4682 sec/batch

step: 1090/20000...  loss: 2.0438...  0.4301 sec/batch

step: 1100/20000...  loss: 2.0640...  0.4462 sec/batch

……

step: 1990/20000...  loss: 1.9070...  0.4442 sec/batch

step: 2000/20000...  loss: 1.8854...  0.3920 sec/batch

……

step: 4000/20000...  loss: 1.7408...  0.4612 sec/batch

step: 4010/20000...  loss: 1.8354...  0.4402 sec/batch

step: 4020/20000...  loss: 1.8101...  0.3951 sec/batch

step: 4030/20000...  loss: 1.8578...  0.4422 sec/batch

step: 4040/20000...  loss: 1.7468...  0.3770 sec/batch

step: 4050/20000...  loss: 1.8008...  0.4301 sec/batch

step: 4060/20000...  loss: 1.9093...  0.3650 sec/batch

step: 4070/20000...  loss: 1.8889...  0.4582 sec/batch

step: 4080/20000...  loss: 1.8673...  0.4682 sec/batch

step: 4090/20000...  loss: 1.7999...  0.3951 sec/batch

step: 4100/20000...  loss: 1.7484...  0.4582 sec/batch

step: 4110/20000...  loss: 1.7629...  0.4071 sec/batch

step: 4120/20000...  loss: 1.6727...  0.3940 sec/batch

step: 4130/20000...  loss: 1.7895...  0.3750 sec/batch

step: 4140/20000...  loss: 1.8002...  0.3860 sec/batch

step: 4150/20000...  loss: 1.7922...  0.4532 sec/batch

step: 4160/20000...  loss: 1.7259...  0.3951 sec/batch

step: 4170/20000...  loss: 1.7123...  0.4642 sec/batch

step: 4180/20000...  loss: 1.7262...  0.3760 sec/batch

step: 4190/20000...  loss: 1.8545...  0.3910 sec/batch

step: 4200/20000...  loss: 1.8221...  0.3539 sec/batch

step: 4210/20000...  loss: 1.8693...  0.4472 sec/batch

step: 4220/20000...  loss: 1.8502...  0.4793 sec/batch

step: 4230/20000...  loss: 1.7788...  0.3539 sec/batch

step: 4240/20000...  loss: 1.8240...  0.4793 sec/batch

step: 4250/20000...  loss: 1.7947...  0.4101 sec/batch

step: 4260/20000...  loss: 1.8094...  0.3630 sec/batch

step: 4270/20000...  loss: 1.7775...  0.4021 sec/batch

step: 4280/20000...  loss: 1.8868...  0.3950 sec/batch

step: 4290/20000...  loss: 1.7982...  0.4532 sec/batch

step: 4300/20000...  loss: 1.8579...  0.3359 sec/batch

step: 4310/20000...  loss: 1.7709...  0.4412 sec/batch

step: 4320/20000...  loss: 1.7422...  0.4011 sec/batch

step: 4330/20000...  loss: 1.7841...  0.5775 sec/batch

step: 4340/20000...  loss: 1.7253...  0.4532 sec/batch

step: 4350/20000...  loss: 1.8973...  0.3479 sec/batch

step: 4360/20000...  loss: 1.7462...  0.3680 sec/batch

step: 4370/20000...  loss: 1.8291...  0.5204 sec/batch

step: 4380/20000...  loss: 1.7276...  0.3930 sec/batch

step: 4390/20000...  loss: 1.7404...  0.3289 sec/batch

step: 4400/20000...  loss: 1.6993...  0.4462 sec/batch

step: 4410/20000...  loss: 1.8670...  0.3920 sec/batch

step: 4420/20000...  loss: 1.8217...  0.4301 sec/batch

step: 4430/20000...  loss: 1.8339...  0.5164 sec/batch

step: 4440/20000...  loss: 1.7154...  0.3660 sec/batch

step: 4450/20000...  loss: 1.8485...  0.3920 sec/batch

step: 4460/20000...  loss: 1.7758...  0.4161 sec/batch

step: 4470/20000...  loss: 1.7017...  0.5234 sec/batch

step: 4480/20000...  loss: 1.6939...  0.3379 sec/batch

step: 4490/20000...  loss: 1.7715...  0.3951 sec/batch

step: 4500/20000...  loss: 1.7940...  0.4492 sec/batch

step: 4510/20000...  loss: 1.7804...  0.3740 sec/batch

step: 4520/20000...  loss: 1.7876...  0.5073 sec/batch

step: 4530/20000...  loss: 1.7149...  0.5825 sec/batch

step: 4540/20000...  loss: 1.7723...  0.3961 sec/batch

step: 4550/20000...  loss: 1.8180...  0.4271 sec/batch

step: 4560/20000...  loss: 1.7757...  0.4933 sec/batch

step: 4570/20000...  loss: 1.8858...  0.3309 sec/batch

step: 4580/20000...  loss: 1.7332...  0.3890 sec/batch

step: 4590/20000...  loss: 1.8466...  0.4251 sec/batch

step: 4600/20000...  loss: 1.8532...  0.3930 sec/batch

step: 4610/20000...  loss: 1.8826...  0.3850 sec/batch

step: 4620/20000...  loss: 1.8447...  0.3359 sec/batch

step: 4630/20000...  loss: 1.7697...  0.4221 sec/batch

step: 4640/20000...  loss: 1.9220...  0.3549 sec/batch

step: 4650/20000...  loss: 1.7555...  0.4011 sec/batch

step: 4660/20000...  loss: 1.8541...  0.3830 sec/batch

step: 4670/20000...  loss: 1.8676...  0.4181 sec/batch

step: 4680/20000...  loss: 1.9653...  0.3600 sec/batch

step: 4690/20000...  loss: 1.8377...  0.3981 sec/batch

step: 4700/20000...  loss: 1.7620...  0.4291 sec/batch

step: 4710/20000...  loss: 1.7802...  0.4251 sec/batch

step: 4720/20000...  loss: 1.7495...  0.4131 sec/batch

step: 4730/20000...  loss: 1.7338...  0.3299 sec/batch

step: 4740/20000...  loss: 1.9160...  0.4662 sec/batch

step: 4750/20000...  loss: 1.8142...  0.3389 sec/batch

step: 4760/20000...  loss: 1.8162...  0.3680 sec/batch

step: 4770/20000...  loss: 1.8710...  0.4552 sec/batch

step: 4780/20000...  loss: 1.8923...  0.4321 sec/batch

step: 4790/20000...  loss: 1.8062...  0.4061 sec/batch

step: 4800/20000...  loss: 1.8175...  0.4342 sec/batch

step: 4810/20000...  loss: 1.9355...  0.3459 sec/batch

step: 4820/20000...  loss: 1.7608...  0.4191 sec/batch

step: 4830/20000...  loss: 1.8031...  0.3991 sec/batch

step: 4840/20000...  loss: 1.9261...  0.4472 sec/batch

step: 4850/20000...  loss: 1.7129...  0.3981 sec/batch

step: 4860/20000...  loss: 1.7748...  0.4642 sec/batch

step: 4870/20000...  loss: 1.8557...  0.4221 sec/batch

step: 4880/20000...  loss: 1.7181...  0.4452 sec/batch

step: 4890/20000...  loss: 1.7657...  0.5134 sec/batch

step: 4900/20000...  loss: 1.8971...  0.4813 sec/batch

step: 4910/20000...  loss: 1.7947...  0.3670 sec/batch

step: 4920/20000...  loss: 1.7647...  0.4362 sec/batch

step: 4930/20000...  loss: 1.7945...  0.3509 sec/batch

step: 4940/20000...  loss: 1.7773...  0.4342 sec/batch

step: 4950/20000...  loss: 1.7854...  0.4121 sec/batch

step: 4960/20000...  loss: 1.7883...  0.3720 sec/batch

step: 4970/20000...  loss: 1.7483...  0.3700 sec/batch

step: 4980/20000...  loss: 1.8686...  0.5645 sec/batch

step: 4990/20000...  loss: 1.8472...  0.2075 sec/batch

step: 5000/20000...  loss: 1.8808...  0.1955 sec/batch

……

step: 9990/20000...  loss: 1.7760...  0.2306 sec/batch

step: 10000/20000...  loss: 1.6906...  0.2256 sec/batch

……

step: 19800/20000...  loss: 1.5745...  0.2657 sec/batch

step: 19810/20000...  loss: 1.7075...  0.2326 sec/batch

step: 19820/20000...  loss: 1.5854...  0.3660 sec/batch

step: 19830/20000...  loss: 1.6520...  0.3529 sec/batch

step: 19840/20000...  loss: 1.6153...  0.3434 sec/batch

step: 19850/20000...  loss: 1.6174...  0.3063 sec/batch

step: 19860/20000...  loss: 1.6060...  0.2717 sec/batch

step: 19870/20000...  loss: 1.5775...  0.2627 sec/batch

step: 19880/20000...  loss: 1.6181...  0.2326 sec/batch

step: 19890/20000...  loss: 1.5117...  0.2547 sec/batch

step: 19900/20000...  loss: 1.5613...  0.2356 sec/batch

step: 19910/20000...  loss: 1.6465...  0.2346 sec/batch

step: 19920/20000...  loss: 1.5160...  0.2607 sec/batch

step: 19930/20000...  loss: 1.6922...  0.2306 sec/batch

step: 19940/20000...  loss: 1.8708...  0.2527 sec/batch

step: 19950/20000...  loss: 1.5579...  0.2276 sec/batch

step: 19960/20000...  loss: 1.5850...  0.2376 sec/batch

step: 19970/20000...  loss: 1.6798...  0.2286 sec/batch

step: 19980/20000...  loss: 1.5684...  0.2667 sec/batch

step: 19990/20000...  loss: 1.4981...  0.2617 sec/batch

step: 20000/20000...  loss: 1.5322...  0.3199 sec/batch


训练的数据集展示


1、数据集展示


/**

* context_tracking_enter - Inform the context tracking that the CPU is going

*                          enter user or guest space mode.

*

* This function must be called right before we switch from the kernel

* to user or guest space, when it's guaranteed the remaining kernel

* instructions to execute won't use any RCU read side critical section

* because this function sets RCU in extended quiescent state.

*/

void context_tracking_enter(enum ctx_state state)

{

unsigned long flags;

/*

 * Repeat the user_enter() check here because some archs may be calling

 * this from asm and if no CPU needs context tracking, they shouldn't

 * go further. Repeat the check here until they support the inline static

 * key check.

 */

if (!context_tracking_is_enabled())

 return;

/*

 * Some contexts may involve an exception occuring in an irq,

 * leading to that nesting:

 * rcu_irq_enter() rcu_user_exit() rcu_user_exit() rcu_irq_exit()

 * This would mess up the dyntick_nesting count though. And rcu_irq_*()

 * helpers are enough to protect RCU uses inside the exception. So

 * just return immediately if we detect we are in an IRQ.

 */

if (in_interrupt())

 return;

/* Kernel threads aren't supposed to go to userspace */

WARN_ON_ONCE(!current->mm);

local_irq_save(flags);

if ( __this_cpu_read(context_tracking.state) != state) {

 if (__this_cpu_read(context_tracking.active)) {

  /*

   * At this stage, only low level arch entry code remains and

   * then we'll run in userspace. We can assume there won't be

   * any RCU read-side critical section until the next call to

   * user_exit() or rcu_irq_enter(). Let's remove RCU's dependency

   * on the tick.

   */

  if (state == CONTEXT_USER) {

   trace_user_enter(0);

   vtime_user_enter(current);

  }

  rcu_user_enter();

 }

 /*

  * Even if context tracking is disabled on this CPU, because it's outside

  * the full dynticks mask for example, we still have to keep track of the

  * context transitions and states to prevent inconsistency on those of

  * other CPUs.

  * If a task triggers an exception in userspace, sleep on the exception

  * handler and then migrate to another CPU, that new CPU must know where

  * the exception returns by the time we call exception_exit().

  * This information can only be provided by the previous CPU when it called

  * exception_enter().

  * OTOH we can spare the calls to vtime and RCU when context_tracking.active

  * is false because we know that CPU is not tickless.

  */

 __this_cpu_write(context_tracking.state, state);

}

local_irq_restore(flags);

}

NOKPROBE_SYMBOL(context_tracking_enter);

EXPORT_SYMBOL_GPL(context_tracking_enter);

void context_tracking_user_enter(void)

{

context_tracking_enter(CONTEXT_USER);

}

NOKPROBE_SYMBOL(context_tracking_user_enter);

/**

* context_tracking_exit - Inform the context tracking that the CPU is

*                         exiting user or guest mode and entering the kernel.

*

* This function must be called after we entered the kernel from user or

* guest space before any use of RCU read side critical section. This

* potentially include any high level kernel code like syscalls, exceptions,

* signal handling, etc...

*

* This call supports re-entrancy. This way it can be called from any exception

* handler without needing to know if we came from userspace or not.

*/

void context_tracking_exit(enum ctx_state state)

{

unsigned long flags;

if (!context_tracking_is_enabled())

 return;

if (in_interrupt())

 return;

local_irq_save(flags);

if (__this_cpu_read(context_tracking.state) == state) {

 if (__this_cpu_read(context_tracking.active)) {

  /*

   * We are going to run code that may use RCU. Inform

   * RCU core about that (ie: we may need the tick again).

   */

  rcu_user_exit();

  if (state == CONTEXT_USER) {

   vtime_user_exit(current);

   trace_user_exit(0);

  }

 }

 __this_cpu_write(context_tracking.state, CONTEXT_KERNEL);

}

local_irq_restore(flags);

}

NOKPROBE_SYMBOL(context_tracking_exit);

EXPORT_SYMBOL_GPL(context_tracking_exit);

void context_tracking_user_exit(void)

{

context_tracking_exit(CONTEXT_USER);

}

NOKPROBE_SYMBOL(context_tracking_user_exit);

 

相关文章
|
3天前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
17 2
|
11天前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
9天前
|
存储 算法 安全
基于哈希表的文件共享平台 C++ 算法实现与分析
在数字化时代,文件共享平台不可或缺。本文探讨哈希表在文件共享中的应用,包括原理、优势及C++实现。哈希表通过键值对快速访问文件元数据(如文件名、大小、位置等),查找时间复杂度为O(1),显著提升查找速度和用户体验。代码示例展示了文件上传和搜索功能,实际应用中需解决哈希冲突、动态扩容和线程安全等问题,以优化性能。
|
2月前
|
数据库连接 Go 数据库
Go语言中的错误注入与防御编程。错误注入通过模拟网络故障、数据库错误等,测试系统稳定性
本文探讨了Go语言中的错误注入与防御编程。错误注入通过模拟网络故障、数据库错误等,测试系统稳定性;防御编程则强调在编码时考虑各种错误情况,确保程序健壮性。文章详细介绍了这两种技术在Go语言中的实现方法及其重要性,旨在提升软件质量和可靠性。
43 1
|
2月前
|
测试技术 Go
go语言中测试工具
【10月更文挑战第22天】
36 4
|
3月前
|
机器学习/深度学习 编解码 监控
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
这篇文章详细介绍了如何使用YOLOv8进行目标检测任务,包括环境搭建、数据准备、模型训练、验证测试以及模型转换等完整流程。
4302 1
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
3月前
|
机器学习/深度学习 监控 计算机视觉
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
本文介绍了如何使用YOLOv7进行目标检测,包括环境搭建、数据集准备、模型训练、验证、测试以及常见错误的解决方法。YOLOv7以其高效性能和准确率在目标检测领域受到关注,适用于自动驾驶、安防监控等场景。文中提供了源码和论文链接,以及详细的步骤说明,适合深度学习实践者参考。
728 0
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
3月前
|
机器学习/深度学习 并行计算 数据可视化
目标分类笔记(二): 利用PaddleClas的框架来完成多标签分类任务(从数据准备到训练测试部署的完整流程)
这篇文章介绍了如何使用PaddleClas框架完成多标签分类任务,包括数据准备、环境搭建、模型训练、预测、评估等完整流程。
206 0
|
3月前
|
机器学习/深度学习 JSON 算法
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
本文介绍了DeepLab V3在语义分割中的应用,包括数据集准备、模型训练、测试和评估,提供了代码和资源链接。
486 0
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
|
3月前
|
机器学习/深度学习 数据采集 算法
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。
80 0
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)