TF之NN:利用神经网络系统自动学习散点(二次函数+noise+优化修正)输出结果可视化(matplotlib动态演示)

简介: TF之NN:利用神经网络系统自动学习散点(二次函数+noise+优化修正)输出结果可视化(matplotlib动态演示)

输出结果

image.png

代码设计

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

def add_layer(inputs, in_size, out_size, activation_function=None):  

   Weights = tf.Variable(tf.random_normal([in_size, out_size]))  

   biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)          

   Wx_plus_b = tf.matmul(inputs, Weights) + biases              

   if activation_function is None:  

       outputs = Wx_plus_b

   else:                            

       outputs = activation_function(Wx_plus_b)

   return outputs

x_data = np.linspace(-1,1,300)[:, np.newaxis]  

noise = np.random.normal(0, 0.05, x_data.shape)

y_data = np.square(x_data) - 0.5 + noise      

# define placeholder for inputs to network

xs = tf.placeholder(tf.float32, [None, 1])  

ys = tf.placeholder(tf.float32, [None, 1])

l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)  

prediction = add_layer(l1, 10, 1, activation_function=None)

# the error between prediciton and real data

loss = tf.reduce_mean(

   tf.reduce_sum(tf.square(ys - prediction),reduction_indices=[1])

   )

train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)  

# important step

init = tf.global_variables_initializer()

sess = tf.Session()                  

sess.run(init)                      

# plot the real data

fig = plt.figure()

ax = fig.add_subplot(1,1,1)

ax.scatter(x_data, y_data)

plt.ion()

plt.show()

for i in range(1000):

   # training

   sess.run(train_step, feed_dict={xs: x_data, ys: y_data})

   if i % 50 == 0:  

       # to visualize the result and improvement

       try:

           ax.lines.remove(lines[0])

       except Exception:

           pass

       prediction_value = sess.run(prediction, feed_dict={xs: x_data})

       # plot the prediction

       lines = ax.plot(x_data, prediction_value, 'r-', lw=5)

       plt.title('Matplotlib,NN,Efficient learning,Approach,Quadratic function --Jason Niu')

       plt.pause(0.1)


相关文章
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
|
2月前
|
机器学习/深度学习 编解码
深度学习笔记(三):神经网络之九种激活函数Sigmoid、tanh、ReLU、ReLU6、Leaky Relu、ELU、Swish、Mish、Softmax详解
本文介绍了九种常用的神经网络激活函数:Sigmoid、tanh、ReLU、ReLU6、Leaky ReLU、ELU、Swish、Mish和Softmax,包括它们的定义、图像、优缺点以及在深度学习中的应用和代码实现。
172 0
深度学习笔记(三):神经网络之九种激活函数Sigmoid、tanh、ReLU、ReLU6、Leaky Relu、ELU、Swish、Mish、Softmax详解
|
2月前
|
机器学习/深度学习 人工智能 数据可视化
|
2月前
|
机器学习/深度学习 数据可视化 算法
激活函数与神经网络------带你迅速了解sigmoid,tanh,ReLU等激活函数!!!
激活函数与神经网络------带你迅速了解sigmoid,tanh,ReLU等激活函数!!!
|
3月前
|
数据可视化 Python
可视化 图形 matplotlib
可视化 图形 matplotlib
|
4月前
|
数据可视化 Python
matplotlib可视化必知必会富文本绘制方法
matplotlib可视化必知必会富文本绘制方法
|
4月前
|
机器学习/深度学习 算法
神经网络中激活函数的重要性
【8月更文挑战第23天】
62 0
|
4月前
|
机器学习/深度学习 Shell 计算机视觉
一文搞懂 卷积神经网络 卷积算子应用举例 池化 激活函数
这篇文章通过案例详细解释了卷积神经网络中的卷积算子应用、池化操作和激活函数,包括如何使用卷积算子进行边缘检测和图像模糊,以及ReLU激活函数如何解决梯度消失问题。
|
3月前
|
Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
|
3月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
58 1

热门文章

最新文章

下一篇
DataWorks