TF之NN:利用神经网络系统自动学习散点(二次函数+noise+优化修正)输出结果可视化(matplotlib动态演示)

简介: TF之NN:利用神经网络系统自动学习散点(二次函数+noise+优化修正)输出结果可视化(matplotlib动态演示)

输出结果

image.png

代码设计

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt

def add_layer(inputs, in_size, out_size, activation_function=None):  

   Weights = tf.Variable(tf.random_normal([in_size, out_size]))  

   biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)          

   Wx_plus_b = tf.matmul(inputs, Weights) + biases              

   if activation_function is None:  

       outputs = Wx_plus_b

   else:                            

       outputs = activation_function(Wx_plus_b)

   return outputs

x_data = np.linspace(-1,1,300)[:, np.newaxis]  

noise = np.random.normal(0, 0.05, x_data.shape)

y_data = np.square(x_data) - 0.5 + noise      

# define placeholder for inputs to network

xs = tf.placeholder(tf.float32, [None, 1])  

ys = tf.placeholder(tf.float32, [None, 1])

l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)  

prediction = add_layer(l1, 10, 1, activation_function=None)

# the error between prediciton and real data

loss = tf.reduce_mean(

   tf.reduce_sum(tf.square(ys - prediction),reduction_indices=[1])

   )

train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)  

# important step

init = tf.global_variables_initializer()

sess = tf.Session()                  

sess.run(init)                      

# plot the real data

fig = plt.figure()

ax = fig.add_subplot(1,1,1)

ax.scatter(x_data, y_data)

plt.ion()

plt.show()

for i in range(1000):

   # training

   sess.run(train_step, feed_dict={xs: x_data, ys: y_data})

   if i % 50 == 0:  

       # to visualize the result and improvement

       try:

           ax.lines.remove(lines[0])

       except Exception:

           pass

       prediction_value = sess.run(prediction, feed_dict={xs: x_data})

       # plot the prediction

       lines = ax.plot(x_data, prediction_value, 'r-', lw=5)

       plt.title('Matplotlib,NN,Efficient learning,Approach,Quadratic function --Jason Niu')

       plt.pause(0.1)


目录
打赏
0
0
0
0
1042
分享
相关文章
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
163 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
52 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
41 10
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
43 4
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
44 8
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 2024轻量化网络MoblieNetV4:移动生态系统的通用模型
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
55 18
【01】客户端服务端C语言-go语言-web端PHP语言整合内容发布-优雅草网络设备监控系统-硬件设备实时监控系统运营版发布-本产品基于企业级开源项目Zabbix深度二开-分步骤实现预计10篇合集-自营版
【01】客户端服务端C语言-go语言-web端PHP语言整合内容发布-优雅草网络设备监控系统-硬件设备实时监控系统运营版发布-本产品基于企业级开源项目Zabbix深度二开-分步骤实现预计10篇合集-自营版
22 0

热门文章

最新文章