基于FPGA的SNN脉冲神经网络之LIF神经元verilog实现,包含testbench

简介: 本项目展示了 LIF(Leaky Integrate-and-Fire)神经元算法的实现与应用,含无水印运行效果预览。基于 Vivado2019.2 开发,完整代码配有中文注释及操作视频。LIF 模型模拟生物神经元特性,通过积分输入信号并判断膜电位是否达阈值产生脉冲,相较于 Hodgkin-Huxley 模型更简化,适合大规模神经网络模拟。核心程序片段示例,助您快速上手。

1.算法运行效果图预览
(完整程序运行后无水印)

image.png

2.算法运行软件版本
vivado2019.2

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)
```//Vtn exp(-dt/tao)
reg signed[15:0]d1_Vtn;
always @(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
d1_Vtn <= 16'd0;
end
else begin
d1_Vtn <= i_Vtn;
end
end
wire signed[31 : 0] P;
mult_gen_0 Vexp (
//.CLK(i_clk), // input wire CLK
.A(d1_Vtn), // input wire [15 : 0] A
.B(o_exp), // input wire [15 : 0] B
//.SCLR(i_rst), // input wire SCLR
.P(P) // output wire [31 : 0] P
);
assign o_dat1=P[27:12];
//sum sitn
Wij
reg signed[31:0]sw1j;
reg signed[31:0]sw2j;
reg signed[31:0]sw3j;
always @(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
sw1j <= 32'd0;
sw2j <= 32'd0;
sw3j <= 32'd0;
end
else begin
sw1j <= $signed(i_stn1)$signed(i_W1j);
sw2j <= $signed(i_stn2)
$signed(i_W2j);
sw3j <= $signed(i_stn3)*$signed(i_W3j);
end
end

reg signed[15:0]d1_dat;
always @(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
d1_dat <= 16'd0;
end
else begin
d1_dat <= sw1j+sw2j+sw3j;
end
end

assign o_dat2= d1_dat;
assign o_Vtn1= o_dat1 + o_dat2;

endmodule

```

4.算法理论概述
LIF(Leaky Integrate - and - Fire)神经元是一种常见的脉冲神经元模型。它模拟了生物神经元的基本特性,主要包括对输入信号的积分和脉冲发放机制。从概念上理解,LIF 神经元就像一个带有漏电特性的容器,输入信号不断往这个容器中 “注水”(积分),当水位(膜电位)达到一定高度(阈值)时,就会产生一个脉冲,然后水位(膜电位)又会被重置。

2.jpg
3.jpg

    与简单的线性神经元模型相比,LIF 神经元具有脉冲发放的非线性特性。线性神经元模型的输出通常是输入的线性组合,而 LIF 神经元的输出是脉冲序列,其发放与否取决于膜电位是否达到阈值。与更复杂的生物神经元模型(如 Hodgkin - Huxley 模型)相比,LIF 神经元是一种简化模型。Hodgkin - Huxley 模型考虑了多种离子通道的动态变化,而 LIF 神经元只关注膜电位的积分和脉冲发放,在计算复杂度上较低,更适合于大规模神经网络的模拟和应用。
相关文章
|
4月前
|
机器学习/深度学习 人工智能 算法
基于FPGA的SNN脉冲神经网络之IM神经元verilog实现,包含testbench
本内容介绍了一种基于Izhikevich-Memristive(IM)神经元模型的算法,该模型结合忆阻器特性和神经元动力学,适用于神经形态计算。算法通过Vivado2019.2运行,提供无水印运行效果预览及部分核心程序,完整版含中文注释与操作视频。理论部分详细解析了Izhikevich神经元方程及其放电行为,包括膜电位、恢复变量等参数的作用,并探讨了IM模型在人工智能和脑机接口领域的应用潜力。
|
7月前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
6月前
|
算法 数据安全/隐私保护 异构计算
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。
|
6月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的2ASK+帧同步系统verilog开发,包含testbench,高斯信道,误码统计,可设置SNR
本内容展示了基于Vivado2019.2的算法仿真效果,包括设置不同信噪比(SNR=8db和20db)下的结果及整体波形。同时,详细介绍了2ASK调制解调技术的原理与实现,即通过改变载波振幅传输二进制信号,并提供数学公式支持。此外,还涉及帧同步理论,用于确定数据帧起始位置。最后,给出了Verilog核心程序代码,实现了2ASK解调与帧同步功能,结合DDS模块生成载波信号,完成信号处理流程。
113 0
|
6月前
|
编解码 算法 数据安全/隐私保护
基于FPGA的信号DM编解码实现,包含testbench和matlab对比仿真
本项目展示了DM编解码算法的实现与测试结果。FPGA测试结果显示为T1,Matlab仿真结果为T2。使用软件版本为Matlab 2022a和Vivado 2019.2。核心程序包含详细中文注释和操作视频。DM编解码通过比较信号样本差值进行编码,适用于音频等低频信号处理。硬件结构包括编码器(采样器、减法器、比较器)和解码器(解码器、积分器)。
|
9月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
209 17
|
9月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
161 10
|
9月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
9月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
173 10
|
9月前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。

热门文章

最新文章