RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络

简介: RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络

一、本文介绍

本文记录的是利用自校准模块RCM优化RT-DETR的目标检测方法研究RCM通过矩形自校准函数可以将注意力区域校准得更接近前景对象,有效提高对前景对象的定位能力。==本文将其应用在颈部网络上,使模型能够捕获轴向全局上下文信息,并应用于金字塔上下文提取,使模型表现出更高的精度。==


专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:RT-DETR改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、RCM 原理介绍

2.1 出发点

  • 现有轻量级模型在特征表示能力上受限,难以对前景对象的边界进行建模和区分类别,导致边界分割不准确和分类错误。为了解决这些问题,设计了矩形自校准模块(RCM)来提高前景对象的位置建模能力,并引入金字塔上下文来改善特征表示。

    2.2 原理

2.2.1 矩形自校准注意力(RCA)

  • 采用水平池化和垂直池化来捕获轴向全局上下文,生成两个轴向量。将这两个轴向量相加来建模一个矩形注意力区域。
  • 设计形状自校准函数,通过大核条状卷积调整矩形注意力的形状,使其更接近前景特征。

    2.2.2 特征融合

  • 设计融合函数,将注意力特征与输入特征融合,使用$3×3$深度卷积进一步提取输入特征的局部细节,通过哈达玛积将校准后的注意力特征加权到细化后的输入特征上。

在这里插入图片描述

2.3 结构

  • 矩形自校准注意力批量归一化(BN)多层感知机(MLP)组成。
  • 矩形自校准注意力通过水平和垂直池化操作后,经过形状自校准函数校准,再进行特征融合。之后添加BN和MLP来细化特征,最后采用残差连接增强特征重用。

在这里插入图片描述

2.4 优势

  • 位置建模和前景聚焦
    • 能够使模型更专注于前景进行空间特征重建,通过形状自校准函数可以将注意力区域校准得更接近前景对象,有效提高对前景对象的定位能力。
  • 上下文提取
    • 在捕获轴向全局上下文用于金字塔上下文提取方面表现出色。通过水平和垂直池化以及后续的操作,可以更好地捕捉图像中的上下文信息。
  • 性能优势
    • 与现有的注意力机制相比,RCM通过其独特的设计,如形状自校准和特征融合等操作,可以取得更好的性能。例如在ADE20K数据集上的实验结果显示,使用RCM的模型在mIoU等指标上表现优异。

论文:https://arxiv.org/pdf/2405.06228
源码:https://github.com/nizhenliang/CGRSeg

三、实现代码及RT-DETR修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/143732906

目录
相关文章
|
26天前
|
人工智能 安全 网络安全
网络安全领导者有效缓解团队倦怠的四步策略
网络安全领导者有效缓解团队倦怠的四步策略
|
11天前
|
存储 监控 虚拟化
Hyper V上网优化:提升虚拟机网络速度
要优化Hyper-V虚拟机的网络速度,可从以下几方面入手:1. 优化虚拟交换机配置,如选择合适的交换机类型、启用SR-IOV、配置VLAN和QoS策略;2. 调整网络适配器设置,选择适当的适配器类型并启用VRQ等;3. 优化宿主机网络配置,更新网卡固件和驱动,启用硬件加速;4. 使用性能监视工具监控网络流量;5. 其他措施如启用硬件虚拟化、使用外部存储、配置NLB等。通过合理配置,可显著提升网络性能。
|
19天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
|
25天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目使用MATLAB 2022a实现时间序列预测算法,完整程序无水印。核心代码包含详细中文注释和操作视频。算法基于CNN-LSTM-SAM网络,融合卷积层、LSTM层与自注意力机制,适用于金融市场、气象预报等领域。通过数据归一化、种群初始化、适应度计算及参数优化等步骤,有效处理非线性时间序列,输出精准预测结果。
|
3天前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
|
1月前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
3月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
103 17
|
3月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。

热门文章

最新文章