ACA认证之旅 阿里云人工智能助理工程师

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 认证笔记 - ACA 认证 - 阿里云人工智能助理工程师

认证名称及链接

阿里云人工智能助理工程师认证(ACA)

证书展示

aca-ai-1.png

课程目录

  1. 人工智能概论

    1. 人工智能概念
    2. 从机器学习到深度学习
    3. 深度学习概览
    4. 自然语言处理概述
    5. 图像智能处理概述
    6. 语音识别概述
    7. 知识图谱概述
  2. 神经网络基础

    1. 神经网络介绍
    2. 卷积神经网络
    3. 循环神经网络
    4. 生成对抗网络
  3. TensorFlow开发基础

    1. TensorFlow框架入门
    2. TensorFlow开发进阶
    3. 在线实验
  4. 阿里云机器学习与深度学习开发平台PAI

    1. PAI整体介绍
    2. 深度学习开发环境PAI DSW
    3. 可视化开发环境PAI Studio
    4. 在线预测服务PAI EAS
    5. 在线实验
  5. 阿里云人工智能产品介绍与应用

    1. 视频课程
    2. 在线实验

课程笔记

  1. 人工智能概论

    1. 基于不同维度,人工智能具有多种定义
    2. 图灵测试
    3. 第三次热潮(2006年以后):深度学习、神经网络发展
    4. 发展

      1. 半监督学习
      2. 自监督学习
      3. 无监督学习
      4. 物端AI与边缘计算
      5. 深度学习与推荐系统整合
      6. AutoML:自动网络结构搜索
    5. 应用领域

      1. 图像智能处理

        1. 图像分类
        2. 对象检测
        3. 语义分割
        4. 目标跟踪
      2. 智能语音交互

        1. 语音识别
        2. 对话系统
      3. 自然语言处理(NLP)

        1. 情感分析
        2. 机器翻译
        3. 知识图谱
      4. 机器人
    6. 问题领域 & 主要算法

      1. 传统机器学习

        1. 分类:决策树、逻辑回归、随机森林等
        2. 回归:线性回归、岭回归等
        3. 聚类:k-means、DBSCAN等
        4. 协同过滤:Apriori、SVD等
      2. 深度学习

        1. 图像识别:卷积神经网络
        2. 语音交互:循环神经网络、LSTM
        3. 自然语言处理:深层神经网络、循环神经网络、递归神经网络、卷积神经网络
    7. 深度学习技术体系

      1. 数学理论

        1. 微积分、线性代数
        2. 信息论、概率论
        3. 图论
      2. 算法知识

        1. 机器学习
        2. 神经网络
      3. 开发技术

        1. 软件开发

          1. 开发框架:TensorFlow、Keras、pytorch、caffe、阿里云机器学习平台PAI、阿里云人工智能产品
        2. 硬件开发
    8. 知识图谱

      1. 基本概念

        1. 实体
        2. 关系
        3. 实体和关系拥有各自属性
      2. 关键技术

        1. 数据采集
        2. 知识抽取
        3. 图谱设计
      3. 应用

        1. 语义搜索
        2. 反欺诈分别与识别
        3. 金融投研情报分析
  2. 神经网络基础

    1. 人工神经网络(artificial neural network),简称神经网络(neural network,NN)
    2. 历史发展 & 代表性技术

      1. 第一次热潮:感知机、单层神经网络
      2. 第二次热潮:多层神经网络、后向传播算法
      3. 第三次热潮:卷积神经网络、循环神经网络
    3. 神经网络的前置知识

      1. 算法的基础:数学知识(矩阵计算、微积分、概率论)
      2. 开发的基础:python 、 c++
      3. 运行与调优的基础:计算机系统知识(操作系统、分布式系统)
    4. 神经网络组成:神经元、网络连接
    5. 生物神经元抽象模型
    6. 神经元通用模型

      1. 输入单元
      2. 计算单元:线性计算 + 激励函数(非线性函数、信号变换)
      3. 输出单元
    7. 激励函数:非线性函数(常用)(sigmoid、tanh、relu、leaky relu)、线性函数、偏置值
    8. 神经网络训练过程

      1. 定义网络结构
      2. 随机生成网络连接权重参数
      3. 针对训练样例计算预测值
      4. 根据实际值与预测值差异更新网络参数
    9. 损失函数:均方差损失函数、交叉熵损失函数
    10. 反向传播算法
    11. 梯度消失问题:sigmoid、tanh 存在问题、relu 可缓解问题
    12. 常见神经网络类别 & 适应场景

      1. 多层感知机 - 分类与回归问题
      2. 深度神经网络 - 分类与回归问题
      3. 卷积神经网络 - 图像识别
      4. 循环神经网络 - 语音、文本识别
    13. 卷积神经网络(Convolutional Neural Networks, CNN)

      1. LeNet、AlexNet、GoogLeNet、ResNets
      2. 卷积核、卷积计算
      3. 卷积层:用卷积核的矩阵自上而下、自左向右在图像上滑动
      4. 池化层:最大值池化、求和值池化、均值池化
      5. 完全连接:每个节点都与相邻层的其他节点连接
    14. 循环神经网络(recurrent neural network,RNN)

      1. 不仅将当前的输入样本作为网络输入,还将网络之前感知到的一并作为输入
      2. 发展历程:RNN - simple rnn - bidirectional rnn - lstm network
      3. 循环神经元
      4. 长短期记忆网络 LSTM

        1. LSTM元胞

          1. forget gate
          2. input gate
          3. output gate
    15. 生成对抗网络(generative adversarial networks,GANs)

      1. 生成模型(generative model)
      2. 判别模型(discriminative model)
      3. 近年来复杂分布上无监督学习最具前景的方法之一
      4. 生成对抗网络类别:gan、dcgan、cgan、cyclegan、stylegan、biggan
      5. 应用场景

        1. 图像生成
        2. 图像转换
        3. 人脸合成
        4. 半监督学习
  3. TensorFlow开发基础

    1. 特征:高度灵活性、可移植性好、丰富算法库、文档完善
    2. 可视化:tensorboard
    3. 系统架构

      1. 客户端 front end

        1. 提供编程模型
        2. 负责构造计算图
      2. 后端系统 exec system

        1. 提供运行时环境
        2. 负责运行计算图
    4. 编程模式:计算图(数据流图)
    5. 基本数据模型:张量(tensor)(维度、形状)
    6. 基本语法

      1. 变量:存储动态变化的数据
      2. 占位符:暂时存储变量
    7. 会话session
    8. 数据读取

      1. 预加载数据
      2. 供给数据
      3. 文件读取:从文件系统中读取、使用内存队列缓存数据、文件名队列+内存队列
    9. 开发模式 & 适用场景

      1. 基于预定义的estimator开发 - 深层神经网络DNN分类器、回归器
      2. 基于TensorFlow的神经网络nn模块提供的网络层函数开发 - 多层感知机、卷积神经网络、循环神经网络

        1. 损失函数
        2. 反向传播算法优化器
    10. 模型保存与加载
    11. 优化器

      1. GradientDescentOptimizer
      2. MomentumOptimizer
      3. AdamOptimizer
      4. AdagradOptimizer
      5. AdadeltaOptimizer
  4. 阿里云机器学习与深度学习开发平台PAI

    1. PAI DSW - 云端交互式代码开发工具

      1. 适用于使用深度学习神经网络进行数据分析和使用SQL进行数据分析的用户
    2. PAI Studio - 机器学习可视化开发工具

      1. 适用于使用经典机器学习、深度学习进行数据分析的用户
    3. PAI EAS - 模型在线服务

      1. 适用于在PAI平台上已经完成模型构建和使用PAI Studio和PAI-DSW的用户
    4. PAI autolearning - 自动学习平台
    5. PAI外围产品

      1. dataworks
      2. maxcompute
      3. oss
      4. nas
  5. 阿里云人工智能产品介绍与应用

    1. 阿里巴巴达摩院

      1. 研究领域:机器智能、数据计算、机器人、金融科技、X实验室
    2. 阿里云人工智能产品

      1. 智能语音产品

        1. 录音文件识别
        2. 实时语音转写
        3. 语音合成
      2. 智能图像产品

        1. 图像识别
        2. 图像搜索
        3. 印刷文字识别
      3. 自然语言处理

        1. NLP自学习平台
        2. 多语言分词
        3. 词性标注
        4. 命名实体
        5. 情感分析
      4. 机器翻译

        1. 机器翻译电商版
        2. 机器翻译通用版

相关链接

  1. 阿里巴巴达摩院

备注

工匠精神,精益求精,踏实学习,再接再厉 O(∩_∩)O

欢迎各位同学一起来交流学习心得!

目录
相关文章
|
5天前
|
JSON 分布式计算 数据处理
加速数据处理与AI开发的利器:阿里云MaxFrame实验评测
随着数据量的爆炸式增长,传统数据分析方法逐渐显现出局限性。Python作为数据科学领域的主流语言,因其简洁易用和丰富的库支持备受青睐。阿里云推出的MaxFrame是一个专为Python开发者设计的分布式计算框架,旨在充分利用MaxCompute的强大能力,提供高效、灵活且易于使用的工具,应对大规模数据处理需求。MaxFrame不仅继承了Pandas等流行数据处理库的友好接口,还通过集成先进的分布式计算技术,显著提升了数据处理的速度和效率。
|
17天前
|
人工智能 Java Serverless
阿里云函数计算助力AI大模型快速部署
随着人工智能技术的快速发展,AI大模型已经成为企业数字化转型的重要工具。然而,对于许多业务人员、开发者以及企业来说,探索和利用AI大模型仍然面临诸多挑战。业务人员可能缺乏编程技能,难以快速上手AI模型;开发者可能受限于GPU资源,无法高效构建和部署AI应用;企业则希望简化技术门槛,以更低的成本和更高的效率利用AI大模型。
84 12
|
7天前
|
机器学习/深度学习 人工智能 运维
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
阿里云技术公开课预告:Elastic和阿里云搜索技术专家将深入解读阿里云Elasticsearch Enterprise版的AI功能及其在实际应用。
阿里云技术公开课直播预告:基于阿里云 Elasticsearch 构建 AI 搜索和可观测 Chatbot
|
6天前
|
人工智能 大数据 测试技术
自主和开放并举 探索下一代阿里云AI基础设施固件创新
12月13日,固件产业技术创新联盟产业峰会在杭州举行,阿里云主导的开源固件测试平台发布和PCIe Switch固件技术亮相,成为会议焦点。
|
1月前
|
机器学习/深度学习 人工智能 算法
国内首家! 阿里云人工智能平台 PAI 通过 ITU 国际标准测评
阿里云人工智能平台 PAI 顺利通过中国信通院组织的 ITU-T AICP-GA国际标准和《智算工程平台能力要求》国内标准一致性测评,成为国内首家通过该标准的企业。阿里云人工智能平台 PAI 参与完成了智算安全、AI 能力中心、数据工程、模型开发训练、模型推理部署等全部八个能力域,共计220余个用例的测试,并100%通过测试要求,获得了 ITU 国际标准和国内可信云标准评估通过双证书。
国内首家! 阿里云人工智能平台 PAI 通过 ITU 国际标准测评
|
27天前
|
存储 人工智能 自然语言处理
拥抱Data+AI|B站引入阿里云DMS+X,利用AI赋能运营效率10倍提升
本篇文章针对B站在运营场景中的痛点,深入探讨如何利用阿里云Data+AI解决方案实现智能问数服务,赋能平台用户和运营人员提升自助取数和分析能力,提高价值交付效率的同时为数据平台减负。
拥抱Data+AI|B站引入阿里云DMS+X,利用AI赋能运营效率10倍提升
|
20天前
|
人工智能 NoSQL MongoDB
阿里云与MongoDB庆祝合作五周年,展望AI赋能新未来
阿里云与MongoDB庆祝合作五周年,展望AI赋能新未来
|
15天前
|
人工智能 Cloud Native 调度
阿里云容器服务在AI智算场景的创新与实践
本文源自张凯在2024云栖大会的演讲,介绍了阿里云容器服务在AI智算领域的创新与实践。从2018年推出首个开源GPU容器共享调度方案至今,阿里云容器服务不断推进云原生AI的发展,包括增强GPU可观测性、实现多集群跨地域统一调度、优化大模型推理引擎部署、提供灵活的弹性伸缩策略等,旨在为客户提供高效、低成本的云原生AI解决方案。
|
29天前
|
人工智能 自动驾驶 大数据
预告 | 阿里云邀您参加2024中国生成式AI大会上海站,马上报名
大会以“智能跃进 创造无限”为主题,设置主会场峰会、分会场研讨会及展览区,聚焦大模型、AI Infra等热点议题。阿里云智算集群产品解决方案负责人丛培岩将出席并发表《高性能智算集群设计思考与实践》主题演讲。观众报名现已开放。
|
22天前
|
人工智能 数据可视化 专有云
阿里云飞天企业版获评2024年AI云典型案例
近日,由全球数字经济大会组委会主办、中国信息通信研究院和中国通信企业协会承办的“云·AI·计算国际合作论坛”作为2024全球数字经济大会系列活动之一,在北京举办。论坛以“智启云端,算绘蓝图”为主题,围绕云·AI·计算产业发展、关键技术、最佳实践等展开交流讨论。阿里云飞天企业版异构算力调度平台获评2024年AI云典型案例。