PostgreSQL 用CPU "硬解码" 提升1倍 数值运算能力 助力金融大数据量计算

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS PostgreSQL Serverless,0.5-4RCU 50GB 3个月
推荐场景:
对影评进行热评分析
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介: PostgreSQL 支持的数字类型包括整型,浮点,以及PG自己实现的numeric数据类型。 src/backend/utils/adt/numeric.c src/backend/utils/adt/float.c numeric可以存储非常大的数字,超过2^17次方个数字

PostgreSQL 支持的数字类型包括整型,浮点,以及PG自己实现的numeric数据类型。

src/backend/utils/adt/numeric.c  
src/backend/utils/adt/float.c  

numeric可以存储非常大的数字,超过2^17次方个数字长度。提升了精度的同时,也带来了性能的损耗,不能充分利用CPU 的 “硬解码”能力。

typedef struct NumericVar  
{  
        int                     ndigits;                /* # of digits in digits[] - can be 0! */  
        int                     weight;                 /* weight of first digit */  
        int                     sign;                   /* NUMERIC_POS, NUMERIC_NEG, or NUMERIC_NAN */  
        int                     dscale;                 /* display scale */  
        NumericDigit *buf;                      /* start of palloc'd space for digits[] */  
        NumericDigit *digits;           /* base-NBASE digits */  
} NumericVar;  

浮点类型就比numeric轻量很多,所以性能也会好很多,一倍左右。
在大数据的场合中,节约1倍的计算量是很可观的哦,特别是在金融行业,涉及到大量的数值计算。
如果你玩过greenplum, deepgreen, vitessedb ,也能发现在这些数据库产品的测试手册中,会提到使用money, float8类型来替换原有的numeric类型来进行测试。可以得到更好的性能。
但是money, float8始终是有一定的弊端的,超出精度时,结果可能不准确。
那么怎样提升numeric的性能又不会得到有误的结果呢?
我们可以使用fexeddecimal插件,如下:
https://github.com/2ndQuadrant/fixeddecimal

fixeddecimal的原理很简单,实际上它是使用int8来存储的,整数位和小数位是在代码中固定的:

/*  
 * The scale which the number is actually stored.  
 * For example: 100 will allow 2 decimal places of precision  
 * This must always be a '1' followed by a number of '0's.  
 */  
#define FIXEDDECIMAL_MULTIPLIER 100LL  
  
/*  
 * Number of decimal places to store.  
 * This number should be the number of decimal digits that it takes to  
 * represent FIXEDDECIMAL_MULTIPLIER - 1  
 */  
#define FIXEDDECIMAL_SCALE 2  

如果 FIXEDDECIMAL_SCALE 设置为2,则FIXEDDECIMAL_MULTIPLIER 设置为100,如果 FIXEDDECIMAL_SCALE 设置为3,FIXEDDECIMAL_MULTIPLIER 设置为1000。
也就是通过整型来存储,显示时除以multiplier得到整数部分,取余得到小数部分。

/*  
 * fixeddecimal2str  
 *              Prints the fixeddecimal 'val' to buffer as a string.  
 *              Returns a pointer to the end of the written string.  
 */  
static char *  
fixeddecimal2str(int64 val, char *buffer)  
{  
        char       *ptr = buffer;  
        int64           integralpart = val / FIXEDDECIMAL_MULTIPLIER;  
        int64           fractionalpart = val % FIXEDDECIMAL_MULTIPLIER;  
  
        if (val < 0)  
        {  
                fractionalpart = -fractionalpart;  
  
                /*  
                 * Handle special case for negative numbers where the intergral part  
                 * is zero. pg_int64tostr() won't prefix with "-0" in this case, so  
                 * we'll do it manually  
                 */  
                if (integralpart == 0)  
                        *ptr++ = '-';  
        }  
        ptr = pg_int64tostr(ptr, integralpart);  
        *ptr++ = '.';  
        ptr = pg_int64tostr_zeropad(ptr, fractionalpart, FIXEDDECIMAL_SCALE);  
        return ptr;  
}  

所以fixeddecimal能存取的值范围就是INT8的范围除以multiplier。

postgres=# select 9223372036854775807::int8;  
        int8           
---------------------  
 9223372036854775807  
(1 row)  
  
postgres=# select 9223372036854775808::int8;  
ERROR:  22003: bigint out of range  
LOCATION:  numeric_int8, numeric.c:2955  

postgres=# select 92233720368547758.07::fixeddecimal;  
     fixeddecimal       
----------------------  
 92233720368547758.07  
(1 row)  
  
postgres=# select 92233720368547758.08::fixeddecimal;  
ERROR:  22003: value "92233720368547758.08" is out of range for type fixeddecimal  
LOCATION:  scanfixeddecimal, fixeddecimal.c:499  

另外需要注意,编译fixeddecimal需要用到支持__int128的编译器,gcc 4.9.3是支持的。所以如果你用的gcc版本比较低的话,需要提前更新好gcc。
http://blog.163.com/digoal@126/blog/static/163877040201601313814429/

下面测试一下fixeddecimal+PostgreSQL 9.5的性能表现,对1亿数据进行加减乘除以及聚合的运算,看float8, numeric, fixeddecimal类型的运算结果和速度:
使用auto_explain记录下对比float8,numeric,fixeddecimal的执行计划和耗时。

psql
\timing  
  
postgres=# load 'auto_explain';  
LOAD  
Time: 2.328 ms  
  
postgres=# set auto_explain.log_analyze =true;  
SET  
Time: 0.115 ms  
postgres=# set auto_explain.log_buffers =true;  
SET  
Time: 0.080 ms  
postgres=# set auto_explain.log_nested_statements=true;  
SET  
Time: 0.073 ms  
postgres=# set auto_explain.log_timing=true;  
SET  
Time: 0.089 ms  
postgres=# set auto_explain.log_triggers=true;  
SET  
Time: 0.076 ms  
postgres=# set auto_explain.log_verbose=true;  
SET  
Time: 0.074 ms  
postgres=# set auto_explain.log_min_duration=0;  
SET  
Time: 0.149 ms  
postgres=# set client_min_messages ='log';  
SET  
Time: 0.144 ms  
  
postgres=# set work_mem='8GB';  
SET  
Time: 0.152 ms  
  
postgres=# select sum(i::numeric),min(i::numeric),max(i::numeric),avg(i::numeric),sum(3.0::numeric*(i::numeric+i::numeric)),avg(i::numeric/3.0::numeric) from generate_series(1,100000000) t(i);  
LOG:  duration: 241348.655 ms  plan:  
Query Text: select sum(i::numeric),min(i::numeric),max(i::numeric),avg(i::numeric),sum(3.0::numeric*(i::numeric+i::numeric)),avg(i::numeric/3.0::numeric) from generate_series(1,100000000) t(i);  
Aggregate  (cost=50.01..50.02 rows=1 width=4) (actual time=241348.631..241348.631 rows=1 loops=1)  
  Output: sum((i)::numeric), min((i)::numeric), max((i)::numeric), avg((i)::numeric), sum((3.0 * ((i)::numeric + (i)::numeric))), avg(((i)::numeric / 3.0))  
  ->  Function Scan on pg_catalog.generate_series t  (cost=0.00..10.00 rows=1000 width=4) (actual time=12200.116..22265.586 rows=100000000 loops=1)  
        Output: i  
        Function Call: generate_series(1, 100000000)  
       sum        | min |    max    |          avg          |         sum         |              avg                
------------------+-----+-----------+-----------------------+---------------------+-------------------------------  
 5000000050000000 |   1 | 100000000 | 50000000.500000000000 | 30000000300000000.0 | 16666666.83333333333333333333  
(1 row)  
  
Time: 243149.286 ms  
  
postgres=# select sum(i::float8),min(i::float8),max(i::float8),avg(i::float8),sum(3.0::float8*(i::float8+i::float8)),avg(i::float8/3.0::float8) from generate_series(1,100000000) t(i);  
LOG:  duration: 112407.004 ms  plan:  
Query Text: select sum(i::float8),min(i::float8),max(i::float8),avg(i::float8),sum(3.0::float8*(i::float8+i::float8)),avg(i::float8/3.0::float8) from generate_series(1,100000000) t(i);  
Aggregate  (cost=50.01..50.02 rows=1 width=4) (actual time=112406.967..112406.967 rows=1 loops=1)  
  Output: sum((i)::double precision), min((i)::double precision), max((i)::double precision), avg((i)::double precision), sum(('3'::double precision * ((i)::double precision + (i)::double precision))), avg(((i)::double precision / '3'::double precision))  
  ->  Function Scan on pg_catalog.generate_series t  (cost=0.00..10.00 rows=1000 width=4) (actual time=12157.571..20994.444 rows=100000000 loops=1)  
        Output: i  
        Function Call: generate_series(1, 100000000)  
      sum       | min |    max    |    avg     |         sum          |       avg          
----------------+-----+-----------+------------+----------------------+------------------  
 5.00000005e+15 |   1 | 100000000 | 50000000.5 | 3.00000003225094e+16 | 16666666.8333333  
(1 row)  
  
Time: 114208.528 ms  
  
postgres=# select sum(i::fixeddecimal),min(i::fixeddecimal),max(i::fixeddecimal),avg(i::fixeddecimal),sum(3.0::fixeddecimal*(i::fixeddecimal+i::fixeddecimal)),avg(i::fixeddecimal/3.0::fixeddecimal) from generate_series(1,100000000) t(i);  
LOG:  duration: 97956.458 ms  plan:  
Query Text: select sum(i::fixeddecimal),min(i::fixeddecimal),max(i::fixeddecimal),avg(i::fixeddecimal),sum(3.0::fixeddecimal*(i::fixeddecimal+i::fixeddecimal)),avg(i::fixeddecimal/3.0::fixeddecimal) from generate_series(1,100000000) t(i);  
Aggregate  (cost=50.01..50.02 rows=1 width=4) (actual time=97956.431..97956.431 rows=1 loops=1)  
  Output: sum((i)::fixeddecimal), min((i)::fixeddecimal), max((i)::fixeddecimal), avg((i)::fixeddecimal), sum(('3.00'::fixeddecimal * ((i)::fixeddecimal + (i)::fixeddecimal))), avg(((i)::fixeddecimal / '3.00'::fixeddecimal))  
  ->  Function Scan on pg_catalog.generate_series t  (cost=0.00..10.00 rows=1000 width=4) (actual time=12168.630..20874.617 rows=100000000 loops=1)  
        Output: i  
        Function Call: generate_series(1, 100000000)  
         sum         | min  |     max      |     avg     |         sum          |     avg       
---------------------+------+--------------+-------------+----------------------+-------------  
 5000000050000000.00 | 1.00 | 100000000.00 | 50000000.50 | 30000000300000000.00 | 16666666.83  
(1 row)  
  
Time: 99763.032 ms  

性能对比:
_

注意上面的测试case,
float8的结果已经不准确了,fixeddecimal使用了默认的scale=2,所以小数位保持2位精度。
numeric则精度更高,显示的部分没有显示全,这是PG内部控制的。
另外需要注意的是,fixeddecimal对于超出精度的部分是做的截断,不是round, 因此123.555是存的12355而不是12356。

postgres=# select '123.555'::fixeddecimal;  
 fixeddecimal   
--------------  
 123.55  
(1 row)  
  
postgres=# select '123.555'::fixeddecimal/'123.556'::fixeddecimal;  
 ?column?   
----------  
 1.00  
(1 row)  
  
postgres=# select '124.555'::fixeddecimal/'123.556'::fixeddecimal;  
 ?column?   
----------  
 1.00  
(1 row)  
  
postgres=# select 124.555/123.556;  
      ?column?        
--------------------  
 1.0080854025704944  
(1 row)  
相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
3月前
|
存储 SQL 分布式计算
大数据之路:阿里巴巴大数据实践——元数据与计算管理
本内容系统讲解了大数据体系中的元数据管理与计算优化。元数据部分涵盖技术、业务与管理元数据的分类及平台工具,并介绍血缘捕获、智能推荐与冷热分级等技术创新。元数据应用于数据标签、门户管理与建模分析。计算管理方面,深入探讨资源调度失衡、数据倾斜、小文件及长尾任务等问题,提出HBO与CBO优化策略及任务治理方案,全面提升资源利用率与任务执行效率。
|
存储 负载均衡 算法
大数据散列分区计算哈希值
大数据散列分区计算哈希值
190 4
|
分布式计算 大数据 Java
大数据-87 Spark 集群 案例学习 Spark Scala 案例 手写计算圆周率、计算共同好友
大数据-87 Spark 集群 案例学习 Spark Scala 案例 手写计算圆周率、计算共同好友
189 5
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
147 3
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
241 0
|
10月前
|
SQL 分布式计算 DataWorks
MaxCompute MaxFrame评测 | 分布式Python计算服务MaxFrame(完整操作版)
在当今数字化迅猛发展的时代,数据信息的保存与分析对企业决策至关重要。MaxCompute MaxFrame是阿里云自研的分布式计算框架,支持Python编程接口、兼容Pandas接口并自动进行分布式计算。通过MaxCompute的海量计算资源,企业可以进行大规模数据处理、可视化数据分析及科学计算等任务。本文将详细介绍如何开通MaxCompute和DataWorks服务,并使用MaxFrame进行数据操作。包括创建项目、绑定数据源、编写PyODPS 3节点代码以及执行SQL查询等内容。最后,针对使用过程中遇到的问题提出反馈建议,帮助用户更好地理解和使用MaxFrame。
|
机器学习/深度学习 数据采集 搜索推荐
大数据与金融风控:信用评估的新标准
【10月更文挑战第31天】在数字经济时代,大数据成为金融风控的重要资源,特别是在信用评估领域。本文探讨了大数据在金融风控中的应用,包括多维度数据收集、智能数据分析、动态信用评估和个性化风控策略,以及其优势与挑战,并展望了未来的发展趋势。
|
分布式计算 Java MaxCompute
ODPS MR节点跑graph连通分量计算代码报错java heap space如何解决
任务启动命令:jar -resources odps-graph-connect-family-2.0-SNAPSHOT.jar -classpath ./odps-graph-connect-family-2.0-SNAPSHOT.jar ConnectFamily 若是设置参数该如何设置
ly~
|
机器学习/深度学习 人工智能 自然语言处理
大数据在智慧金融中的应用
在智能算法交易中,深度学习揭示价格波动的复杂动力学,强化学习依据市场反馈优化策略,助力投资者获取阿尔法收益。智能监管合规利用自然语言处理精准解读法规,实时追踪监管变化,确保机构紧跟政策。大数据分析监控交易,预警潜在违规行为,变被动防御为主动预防。数智化营销通过多维度数据分析,构建细致客户画像,提供个性化产品推荐。智慧客服借助 AI 技术提升服务质量,增强客户满意度。
ly~
388 3
|
人工智能 分布式计算 大数据
超级计算与大数据:推动科学研究的发展
【9月更文挑战第30天】在信息时代,超级计算和大数据技术正成为推动科学研究的关键力量。超级计算凭借强大的计算能力,在尖端科研、国防军工等领域发挥重要作用;大数据技术则提供高效的数据处理工具,促进跨学科合作与创新。两者融合不仅提升了数据处理效率,还推动了人工智能、生物科学等领域的快速发展。未来,随着技术进步和跨学科合作的加深,超级计算与大数据将在科学研究中扮演更加重要的角色。

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版
  • 推荐镜像

    更多