大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL

本文涉及的产品
RDS AI 助手,专业版
RDS MySQL DuckDB 分析主实例,基础系列 4核8GB
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: 大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(正在更新!)

章节内容

上节完成的内容如下:


Spark案例编写 Scala

计算圆周率

找共同的好友

Super Word Count

需求背景

  • 给定一段文本
  • 将单词全部转换为小写
  • 去除标点符号
  • 去除停用词
  • count值降序保存
  • 结果保存到MySQL
  • 额外要求:标点符合和停用词可以自定义

编写代码

先实现到MySQL保存前的内容,我们需要先编写测试一下我们的代码是否正确

package icu.wzk

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object SuperWordCount1 {

  private val stopWords = "in on to from by a an the is are were was i we you your he his".split("\\s+")

  private val punctuation = "[\\)\\.,:;'!\\?]"

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
      .setAppName("ScalaSuperWordCount1")
      .setMaster("local[*]")
    val sc = new SparkContext(conf)
    sc.setLogLevel("WARN")

    val lines: RDD[String] = sc.textFile(args(0))
    lines
      .flatMap(_.split("\\s+"))
      .map(_.toLowerCase)
      .map(_.replaceAll(punctuation, ""))
      .filter(word => !stopWords.contains(word) && word.trim.nonEmpty)
      .map((_, 1))
      .reduceByKey(_ + _)
      .sortBy(_._2, false)
      .collect()
      .foreach(println)
    
    sc.stop()
  }

}

详细解释

object SuperWordCount1 { … }

SuperWordCount1 是一个 Scala 对象,定义了一个单例对象用于运行单词计数程序。

private val stopWords = “in on to from by a an the is are were was i we you your he his”.split(“\s+”)

这里定义了一个 stopWords 列表,包含了常见的停用词,这些词在统计单词频率时会被过滤掉。

split(“\s+”) 方法将这些停用词用空白字符分割成数组,便于后续的查找和过滤。

private val punctuation = “[\)\.,:;'!\?]”

定义了一个正则表达式 punctuation,用于匹配常见的标点符号。这些标点符号在统计单词频率时会被去除。

def main(args: Array[String]): Unit = { … }

main 方法是程序的入口点,args 是命令行参数,其中 args(0) 通常表示输入文件的路径。

val conf = new SparkConf().setAppName(“ScalaSuperWordCount1”).setMaster(“local[*]”)

SparkConf() 用于配置 Spark 应用程序。setAppName(“ScalaSuperWordCount1”) 设置应用程序的名称。

setMaster(“local[*]”) 指定应用程序以本地模式运行,使用所有可用的 CPU 核心。

val sc = new SparkContext(conf)

SparkContext 是 Spark 应用程序的核心,用于与 Spark 集群进行交互。

sc.setLogLevel(“WARN”)

设置日志级别为 “WARN”,减少日志输出,方便查看重要信息。

val lines: RDD[String] = sc.textFile(args(0))

sc.textFile(args(0)) 从指定的文本文件路径加载数据,创建一个 RDD[String],其中每一行文本都作为一个字符串元素。

lines 是包含输入文本数据的 RDD。

flatMap(_.split(“\s+”))

flatMap 方法将每一行字符串按空白字符拆分成单词,并将其展开成单个单词的 RDD。

map(_.toLowerCase)

将每个单词转换为小写,以确保统计时不区分大小写。

map(_.replaceAll(punctuation, “”))

使用正则表达式 punctuation 去除单词中的标点符号,使得统计结果更加准确。

filter(word => !stopWords.contains(word) && word.trim.nonEmpty)

filter 方法过滤掉停用词和空白单词:

!stopWords.contains(word) 确保当前单词不在停用词列表中。

word.trim.nonEmpty 确保单词在去除前后空白字符后不是空字符串。

map((_, 1))

将每个单词映射为 (word, 1) 的键值对,表示每个单词出现一次。

reduceByKey(_ + _)

reduceByKey 方法根据键(单词)对值(计数)进行累加,统计每个单词的总出现次数。

sortBy(_._2, false)

将统计结果按值(单词出现的次数)从大到小排序。

collect().foreach(println)

collect() 方法将 RDD 中的数据收集到驱动程序中(即本地),然后使用 foreach(println) 输出每个单词及其出现的次数。

由于 collect 会将数据从分布式环境中拉到本地,需要注意数据量大的情况下可能导致内存不足的问题。

sc.stop()

在计算完成后,调用 sc.stop() 方法停止 SparkContext,释放资源。

添加依赖

<dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId>
    <version>8.0.28</version>
</dependency>

同时我们需要在build的部分,也要加入对应的内容,让驱动可以加载进来:

<build>
    <plugins>
        <plugin>
            <groupId>net.alchim31.maven</groupId>
            <artifactId>scala-maven-plugin</artifactId>
            <version>4.4.0</version>
            <executions>
                <execution>
                    <goals>
                        <goal>compile</goal>
                        <goal>testCompile</goal>
                    </goals>
                </execution>
            </executions>
        </plugin>
        <plugin>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-assembly-plugin</artifactId>
            <version>3.3.0</version>
            <configuration>
                <archive>
                    <manifest>
                        <mainClass>cn.lagou.sparkcore.WordCount</mainClass>
                    </manifest>
                </archive>
                <descriptorRefs>
                    <descriptorRef>jar-with-dependencies</descriptorRef>
                </descriptorRefs>
            </configuration>
            <executions>
                <execution>
                    <phase>package</phase>
                    <goals>
                        <goal>single</goal>
                    </goals>
                </execution>
            </executions>
        </plugin>
    </plugins>
</build>

创建库表

我们新建一个数据库,也要新建一个数据表


CREATE TABLE `wordcount` (
  `word` varchar(255) DEFAULT NULL,
  `count` int(11) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci;

写入SQL-未优化

我们在 foreach 中保存了数据,此时需要创建大量的MySQL连接,效率是比较低的。

package icu.wzk

import com.mysql.cj.xdevapi.PreparableStatement
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

import java.sql.{Connection, DriverManager, PreparedStatement}

object SuperWordCount2 {

  private val stopWords = "in on to from by a an the is are were was i we you your he his".split("\\s+")

  private val punctuation = "[\\)\\.,:;'!\\?]"

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
      .setAppName("ScalaSuperWordCount2")
      .setMaster("local[*]")
    val sc = new SparkContext(conf)
    sc.setLogLevel("WARN")

    val lines: RDD[String] = sc.textFile(args(0))

    val words: RDD[String] = lines
      .flatMap(_.split("\\s+"))
      .map(_.trim.toLowerCase())

    val clearWords: RDD[String] = words
      .filter(!stopWords.contains(_))
      .map(_.replaceAll(punctuation, ""))

    val result: RDD[(String, Int)] = clearWords
      .map((_, 1))
      .reduceByKey(_ + _)
      .sortBy(_._2, false)
    result.foreach(println)

    // 输出到 MySQL
    val username = "hive"
    val password = "hive@wzk.icu"
    val url = "jdbc:mysql://h122.wzk.icu:3306/spark-test?useUnicode=true&characterEncoding=utf-8&useSSL=false"

    var conn: Connection = null
    var stmt: PreparedStatement = null
    var sql = "insert into wordcount values(?, ?)"

    result.foreach{
      case (word, count) => try {
        conn = DriverManager.getConnection(url, username, password)
        stmt = conn.prepareStatement(sql)
        stmt.setString(1, word)
        stmt.setInt(2, count)
      } catch {
        case e: Exception => e.printStackTrace()
      } finally {
        if (stmt != null) {
          stmt.close()
        }
        if (conn != null) {
          conn.close()
        }
      }
    }

    sc.stop()
  }

}

写入SQL-优化版

优化后使用 foreachPartition 保存数据,一个分区创建一个链接:cache RDD

注意:

  • SparkSQL 有方便的读写MySQL的方法,给参数直接调用即可
  • 但掌握这个方法很重要,因为SparkSQL不是支持所有类型的数据库
package icu.wzk

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

import java.sql.{Connection, DriverManager, PreparedStatement}

object SuperWordCount3 {

  private val stopWords = "in on to from by a an the is are were was i we you your he his".split("\\s+")
  private val punctuation = "[\\)\\.,:;'!\\?]"
  private val username = "hive"
  private val password = "hive@wzk.icu"
  private val url = "jdbc:mysql://h122.wzk.icu:3306/spark-test?useUnicode=true&characterEncoding=utf-8&useSSL=false"

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
      .setAppName("ScalaSuperWordCount2")
      .setMaster("local[*]")
    val sc = new SparkContext(conf)
    sc.setLogLevel("WARN")

    val lines: RDD[String] = sc.textFile(args(0))

    val words: RDD[String] = lines
      .flatMap(_.split("\\s+"))
      .map(_.trim.toLowerCase())

    val clearWords: RDD[String] = words
      .filter(!stopWords.contains(_))
      .map(_.replaceAll(punctuation, ""))

    val result: RDD[(String, Int)] = clearWords
      .map((_, 1))
      .reduceByKey(_ + _)
      .sortBy(_._2, false)
    result.foreach(println)

    result.foreachPartition(saveAsMySQL)

    sc.stop()
  }

  def saveAsMySQL(iter: Iterator[(String, Int)]): Unit = {
    var conn: Connection = null
    var stmt: PreparedStatement = null
    var sql = "insert into wordcount values(?, ?)"

    try {
      conn = DriverManager.getConnection(url, username, password)
      stmt = conn.prepareStatement(sql)
      iter.foreach{
        case (word, count) =>
          stmt.setString(1, word)
          stmt.setInt(2, count)
      }
    } catch {
      case e: Exception => e.printStackTrace()
    } finally {
      if (stmt != null) {
        stmt.close()
      }
      if (conn != null) {
        conn.close()
      }
    }
  }

}

打包上传

mvn clean package

打包并上传到项目:

运行项目

不写入SQL版

不写入SQL版

spark-submit --master local[*] --class icu.wzk.SuperWordCount1 spark-wordcount-1.0-SNAPSHOT.jar /opt/wzk/goodtbl.java

运行结果如下图:

写入SQL-未优化版

spark-submit --master local[*] --class icu.wzk.SuperWordCount2 spark-wordcount-1.0-SNA

写入SQL-优化版

spark-submit --master local[*] --class icu.wzk.SuperWordCount3 spark-wordcount-1.0-SN

运行结果如下图:

查看数据

查看数据库,内容如下:

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
目录
相关文章
|
6月前
|
存储 SQL 分布式计算
大数据之路:阿里巴巴大数据实践——元数据与计算管理
本内容系统讲解了大数据体系中的元数据管理与计算优化。元数据部分涵盖技术、业务与管理元数据的分类及平台工具,并介绍血缘捕获、智能推荐与冷热分级等技术创新。元数据应用于数据标签、门户管理与建模分析。计算管理方面,深入探讨资源调度失衡、数据倾斜、小文件及长尾任务等问题,提出HBO与CBO优化策略及任务治理方案,全面提升资源利用率与任务执行效率。
|
9月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
4月前
|
NoSQL 算法 Redis
【Docker】(3)学习Docker中 镜像与容器数据卷、映射关系!手把手带你安装 MySql主从同步 和 Redis三主三从集群!并且进行主从切换与扩容操作,还有分析 哈希分区 等知识点!
Union文件系统(UnionFS)是一种**分层、轻量级并且高性能的文件系统**,它支持对文件系统的修改作为一次提交来一层层的叠加,同时可以将不同目录挂载到同一个虚拟文件系统下(unite several directories into a single virtual filesystem) Union 文件系统是 Docker 镜像的基础。 镜像可以通过分层来进行继承,基于基础镜像(没有父镜像),可以制作各种具体的应用镜像。
622 6
|
5月前
|
SQL 关系型数据库 MySQL
Mysql数据恢复—Mysql数据库delete删除后数据恢复案例
本地服务器,操作系统为windows server。服务器上部署mysql单实例,innodb引擎,独立表空间。未进行数据库备份,未开启binlog。 人为误操作使用Delete命令删除数据时未添加where子句,导致全表数据被删除。删除后未对该表进行任何操作。需要恢复误删除的数据。 在本案例中的mysql数据库未进行备份,也未开启binlog日志,无法直接还原数据库。
|
5月前
|
关系型数据库 MySQL 数据管理
Mysql基础学习day03-作业
本内容包含数据库建表语句及多表查询示例,涵盖内连接、外连接、子查询及聚合统计,适用于员工与部门数据管理场景。
103 1
|
5月前
|
SQL 关系型数据库 MySQL
Mysql基础学习day01
本课程为MySQL基础学习第一天内容,涵盖MySQL概述、安装、SQL简介及其分类(DDL、DML、DQL、DCL)、数据库操作(查询、创建、使用、删除)及表操作(创建、约束、数据类型)。适合初学者入门学习数据库基本概念和操作方法。
220 6
|
5月前
|
SQL 关系型数据库 MySQL
Mysql基础学习day02-作业
本教程介绍了数据库表的创建与管理操作,包括创建员工表、插入测试数据、删除记录、更新数据以及多种查询操作,涵盖了SQL语句的基本使用方法,适合初学者学习数据库操作基础。
127 0
|
5月前
|
SQL 关系型数据库 MySQL
Mysql基础学习day03
本课程为MySQL基础学习第三天内容,主要讲解多表关系与多表查询。内容涵盖物理外键与逻辑外键的区别、一对多、一对一及多对多关系的实现方式,以及内连接、外连接、子查询等多表查询方法,并通过具体案例演示SQL语句的编写与应用。
162 0
|
5月前
|
SQL 关系型数据库 MySQL
Mysql基础学习day01-作业
本教程包含三个数据库表的创建练习:学生表(student)要求具备主键、自增长、非空、默认值及唯一约束;课程表(course)定义主键、非空唯一字段及数值精度限制;员工表(employee)包含自增主键、非空字段、默认值、唯一电话号及日期时间类型字段。每个表的结构设计均附有详细SQL代码示例。
110 0
|
5月前
|
SQL 关系型数据库 MySQL
Mysql基础学习day02
本课程为MySQL基础学习第二天内容,涵盖数据定义语言(DDL)的表查询、修改与删除操作,以及数据操作语言(DML)的增删改查功能。通过具体SQL语句与实例演示,帮助学习者掌握MySQL表结构操作及数据管理技巧。
184 0

推荐镜像

更多