时序数据库分析 - TimescaleDB时序数据库介绍

本文涉及的产品
云数据库 RDS SQL Server,基础系列 2核4GB
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介:

标签

PostgreSQL , TimescaleDB , 时间序列 , 物联网 , IoT


背景

随着物联网的发展,时序数据库的需求越来越多,比如水文监控、工厂的设备监控、国家安全相关的数据监控、通讯监控、金融行业指标数据、传感器数据等。

在互联网行业中,也有着非常多的时序数据,例如用户访问网站的行为轨迹,应用程序产生的日志数据等等。

时序数据有几个特点

1. 基本上都是插入,没有更新的需求。

2. 数据基本上都有时间属性,随着时间的推移不断产生新的数据,旧的数据不需要保存太久。

业务方对时序数据通常有几个查询需求

1. 获取最新状态,查询最近的数据(例如传感器最新的状态)

2. 展示区间统计,指定时间范围,查询统计信息,例如平均值,最大值,最小值,计数等。。。

3. 获取异常数据,根据指定条件,筛选异常数据

时序数据库应该具备的特点

1. 压缩能力

通常用得上时序数据库的业务,传感器产生的数据量都是非常庞大的,数据压缩可以降低存储成本。

2. 自动rotate

时序数据通常对历史数据的保留时间间隔是有规定的,例如一个线上时序数据业务,可能只需要保留最近1周的数据。

为了方便使用,时序数据库必须有数据自动rotate的能力。

3. 支持分片,水平扩展

因为涉及的传感器可能很多,单个节点可能比较容易成为瓶颈,所以时序数据库应该具备水平扩展的能力,例如分表应该支持水平分区。

4. 自动扩展分区,

业务对时序数据的查询,往往都会带上对时间区间进行过滤,因此时序数据通常在分区时,一定会有一个时间分区的概念。时序数据库务必能够支持自动扩展分区,减少用户的管理量,不需要人为的干预自动扩展分区。例如1月份月末,自动创建2月份的分区。

5. 插入性能

时序数据,插入是一个强需求。对于插入性能要求较高。

6. 分区可删除

分区可以被删除,例如保留1个月的数据,1个月以前的分区都可以删除掉。

7. 易用性(SQL接口)

SQL是目前最通用的数据库访问语言,如果时序数据库能支持SQL是最好的。

8. 类型丰富

物联网的终端各异,会有越来越多的非标准类型的支持需求。例如采集图像的传感器,数据库中至少要能够存取图像的特征值。而对于其他垂直行业也是如此,为了最大程度的诠释业务,必须要有精准的数据类型来支撑。

9. 索引接口

支持索引,毫无疑问是为了加速查询而引入的。

10. 高效分析能力

时序数据,除了单条的查询,更多的是报表分析或者其他的分析类需求。这对时序数据库的统计能力也是一个挑战。

11. 其他特色

11.1 支持丰富的数据类型,数组、范围类型、JSON类型、K-V类型、GIS类型、图类型等。满足更多的工业化需求,例如传感器的位置信息、传感器上传的数据值的范围,批量以数组或JSON的形式上传,传感器甚至可能上传图片特征值,便于图片的分析。(例如国家安全相关),轨迹数据的上层则带有GIS属性。

这个世界需要的是支持类型丰富的时序数据库,而不是仅仅支持简单类型的时序数据库。

11.2 支持丰富的索引接口,因为类型丰富了,普通的B-TREE索引可能无法满足快速的检索需求,需要更多的索引来支持 数组、JSON、GIS、图特征值、K-V、范围类型等。 (例如PostgreSQL的gin, gist, sp-gist, brin, rum, bloom, hash索引接口)

这两点可以继承PostgreSQL数据库的已有功能,已完全满足。

TimescaleDB介绍

TimescaleDB是基于PostgreSQL数据库打造的一款时序数据库,插件化的形式,随着PostgreSQL的版本升级而升级,不会因为另立分支带来麻烦。

TimescaleDB架构

pic

数据自动按时间和空间分片(chunk)。

TimescaleDB具备以下特点

1. 基于时序优化

2. 自动分片(按时间、空间自动分片(chunk))

3. 全SQL接口

4. 支持垂直于横向扩展

5. 支持时间维度、空间维度自动分区。空间维度指属性字段(例如传感器ID,用户ID等)

6. 支持多个SERVER,多个CHUNK的并行查询。分区在TimescaleDB中被称为chunk。

7. 自动调整CHUNK的大小

8. 内部写优化(批量提交、内存索引、事务支持、数据倒灌)。

内存索引,因为chunk size比较适中,所以索引基本上都不会被交换出去,写性能比较好。

数据倒灌,因为有些传感器的数据可能写入延迟,导致需要写以前的chunk,timescaleDB允许这样的事情发生(可配置)。

9. 复杂查询优化(根据查询条件自动选择chunk,最近值获取优化(最小化的扫描,类似递归收敛),limit子句pushdown到不同的server,chunks,并行的聚合操作)

10. 利用已有的PostgreSQL特性(支持GIS,JOIN等),方便的管理(流复制、PITR)

11. 支持自动的按时间保留策略(自动删除过旧数据)

疑问

1. chunk过多,会不会影响查询性能?

这点不需要担心,PostgreSQL 10.0已经优化了

例子

1. 创建时序表(hypertable)

# Create a schema for a new hypertable  
CREATE TABLE sensor_data (  
"time" timestamp with time zone NOT NULL,  
device_id TEXT NOT NULL,  
location TEXT NULL,  
temperature NUMERIC NULL,  
humidity NUMERIC NULL,  
pm25 NUMERIC  
);  
  
# Create a hypertable from this data  
SELECT create_hypertable  
('sensor_data', 'time', 'device_id', 16);  

2. 迁移数据到hyper table

# Migrate data from existing Postgres table into  
# a TimescaleDB hypertable  
INSERT INTO sensor_data (SELECT * FROM old_data);  

3. 查询hyper table

# Query hypertable like any SQL table  
SELECT device_id, AVG(temperature) from sensor_data  
WHERE temperature IS NOT NULL AND humidity > 0.5  
AND time > now() - interval '7 day'  
GROUP BY device_id;  

4. 查询最近异常的数据

# Metrics about resource-constrained devices  
SELECT time, cpu, freemem, battery FROM devops  
WHERE device_id='foo'  
AND cpu > 0.7 AND freemem < 0.2  
ORDER BY time DESC  
LIMIT 100;  

5. 计算最近7天,每小时的异常次数

# Calculate total errors by latest firmware versions  
# per hour over the last 7 days  
SELECT date_trunc('hour', time) as hour, firmware,  
COUNT(error_msg) as errno FROM data  
WHERE firmware > 50  
AND time > now() - interval '7 day'  
GROUP BY hour, firmware  
ORDER BY hour DESC, errno DESC;  

6. 计算巴士的每小时平均速度

# Find average bus speed in last hour  
# for each NYC borough  
SELECT loc.region, AVG(bus.speed) FROM bus  
INNER JOIN loc ON (bus.bus_id = loc.bus_id)  
WHERE loc.city = 'nyc'  
AND bus.time > now() - interval '1 hour'  
GROUP BY loc.region;  

7. 展示最近12小时,每小时的平均值

=#  SELECT date_trunc('hour', time) AS hour, AVG(weight)  
    FROM logs  
    WHERE device_type = 'pressure-sensor' AND customer_id = 440  
      AND time > now() - interval '12 hours'  
    GROUP BY hour;  
  
 hour               | AVG(weight)  
--------------------+--------------  
 2017-01-04 12:00   | 170.0  
 2017-01-04 13:00   | 174.2  
 2017-01-04 14:00   | 174.0  
 2017-01-04 15:00   | 178.6  
 2017-01-04 16:00   | 173.0  
 2017-01-04 17:00   | 169.9  
 2017-01-04 18:00   | 168.1  
 2017-01-04 19:00   | 170.2  
 2017-01-04 20:00   | 167.4  
 2017-01-04 21:00   | 168.6  

8. 监控每分钟过载的设备数量

=#  SELECT date_trunc('minute', time) AS minute, COUNT(device_id)  
    FROM logs  
    WHERE cpu_level > 0.9 AND free_mem < 1024  
      AND time > now() - interval '24 hours'  
    GROUP BY minute  
    ORDER BY COUNT(device_id) DESC LIMIT 25;  
  
 minute             | heavy_load_devices  
--------------------+---------------------  
 2017-01-04 14:59   | 1653  
 2017-01-04 15:01   | 1650  
 2017-01-04 15:00   | 1605  
 2017-01-04 15:02   | 1594  
 2017-01-04 15:03   | 1594  
 2017-01-04 15:04   | 1561  
 2017-01-04 15:06   | 1499  
 2017-01-04 15:05   | 1460  
 2017-01-04 15:08   | 1459  

9. 最近7天,按固件版本,输出每个固件版本的报错次数

=#  SELECT firmware_version, SUM(error_count) FROM logs  
    WHERE time > now() - interval '7 days'  
    GROUP BY firmware_version  
    ORDER BY SUM(error_count) DESC LIMIT 10;  
  
 firmware_version  | SUM(error_count)  
-------------------+-------------------  
 1.0.10            | 191  
 1.1.0             | 180  
 1.1.1             | 179  
 1.0.8             | 164  
 1.1.3             | 161  
 1.1.2             | 152  
 1.2.1             | 144  
 1.2.0             | 137  
 1.0.7             | 130  
 1.0.5             | 112  
 1.2.2             | 110  

10. 某个范围,每小时,温度高于90度的设备数量。

=#  SELECT date_trunc('hour', time) AS hour, COUNT(logs.device_id)  
    FROM logs  
    JOIN devices ON logs.device_id = devices.id  
    WHERE logs.temperature > 90 AND devices.location = 'SITE-1'  
    GROUP BY hour;  
  
 hour               | COUNT(logs.device_id)  
--------------------+------------------------  
 2017-01-04 12:00   | 994  
 2017-01-04 13:00   | 905  
 2017-01-04 14:00   | 875  
 2017-01-04 15:00   | 910  
 2017-01-04 16:00   | 905  
 2017-01-04 17:00   | 840  
 2017-01-04 18:00   | 801  
 2017-01-04 19:00   | 813  
 2017-01-04 20:00   | 798  

小结

1. TimescaleDB是基于PostgreSQL的时序数据库插件,完全继承了PostgreSQL的功能,对于复杂查询,各种类型(GIS,json,k-v,图像特征值,range,数组,复合类型,自定义类型,.....)的支持非常丰富,非常适合工业化的时序数据库场景需求。

1.1 支持丰富的数据类型,数组、范围类型、JSON类型、K-V类型、GIS类型、图类型等。满足更多的工业化需求,例如传感器的位置信息、传感器上传的数据值的范围,批量以数组或JSON的形式上传,传感器甚至可能上传图片特征值,便于图片的分析。(例如国家安全相关),轨迹数据的上层则带有GIS属性。

未来,这个世界更多需要的是支持类型丰富的时序数据库,而不仅仅是支持简单类型的时序数据库。

1.2 支持丰富的索引接口,因为类型丰富了,普通的B-TREE索引可能无法满足快速的检索需求,需要更多的索引来支持 数组、JSON、GIS、图特征值、K-V、范围类型等。 (例如PostgreSQL的gin, gist, sp-gist, brin, rum, bloom, hash索引接口)

2. 数据的后期处理,分析,结合PostgreSQL退出的HTAP特性,可以更好的满足大量时序数据的实时查询,实时挖掘的需求。

结合技术包括: CPU多核并行计算、向量计算、LLVM、列存储、算子复用、内置的sharding 等等。

参考

http://www.timescale.com/index.html

https://github.com/timescale/timescaledb

TimescaleDB PPT

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
24天前
|
关系型数据库 MySQL 分布式数据库
PolarDB 与传统数据库的性能对比分析
【8月更文第27天】随着云计算技术的发展,越来越多的企业开始将数据管理和存储迁移到云端。阿里云的 PolarDB 作为一款兼容 MySQL 和 PostgreSQL 的关系型数据库服务,提供了高性能、高可用和弹性伸缩的能力。本文将从不同角度对比 PolarDB 与本地部署的传统数据库(如 MySQL、PostgreSQL)在性能上的差异。
57 1
|
2月前
|
SQL Linux 数据库
|
19天前
|
SQL Java OLAP
Hologres 入门:实时分析数据库的新选择
【9月更文第1天】在大数据和实时计算领域,数据仓库和分析型数据库的需求日益增长。随着业务对数据实时性要求的提高,传统的批处理架构已经难以满足现代应用的需求。阿里云推出的 Hologres 就是为了解决这个问题而生的一款实时分析数据库。本文将带你深入了解 Hologres 的基本概念、优势,并通过示例代码展示如何使用 Hologres 进行数据处理。
77 2
|
27天前
|
网络协议 NoSQL 网络安全
【Azure 应用服务】由Web App“无法连接数据库”而逐步分析到解析内网地址的办法(SQL和Redis开启private endpoint,只能通过内网访问,无法从公网访问的情况下)
【Azure 应用服务】由Web App“无法连接数据库”而逐步分析到解析内网地址的办法(SQL和Redis开启private endpoint,只能通过内网访问,无法从公网访问的情况下)
|
2月前
|
存储 人工智能 分布式数据库
现代数据库技术的发展与应用前景分析
随着信息时代的发展,数据库技术在各行各业中扮演着至关重要的角色。本文探讨了现代数据库技术的最新发展趋势,以及其在未来的应用前景,涵盖了分布式数据库、区块链技术与数据库融合、人工智能驱动的数据管理等领域。
|
3月前
|
关系型数据库 MySQL 测试技术
《阿里云产品四月刊》—瑶池数据库微课堂|RDS MySQL 经济版 vs 自建 MySQL 性能压测与性价比分析
阿里云瑶池数据库云原生化和一体化产品能力升级,多款产品更新迭代
|
3月前
|
存储 SQL 运维
OLAP数据库选型指南:Doris与ClickHouse的深入对比与分析
OLAP数据库选型指南:Doris与ClickHouse的深入对比与分析
|
3月前
|
存储 SQL 多模数据库
多模数据库Lindorm再升级:对接Dataphin,打通数据治理“最后一公里”
Lindorm通过与Dataphin的深度整合,进一步解决了数据集成和数据治理的问题,为企业提供更加高效和更具性价比的方案。
多模数据库Lindorm再升级:对接Dataphin,打通数据治理“最后一公里”
|
2月前
|
安全 数据管理
DataphinV4.1大升级:支持Lindorm开启高性价比数据治理,迎来“公共云半托管”云上自助新模式
DataphinV4.1大升级:支持Lindorm开启高性价比数据治理,迎来“公共云半托管”云上自助新模式
|
3月前
|
数据采集 安全 API
DataphinV4.1大升级: 支持Lindorm开启高性价比数据治理,迎来“公共云半托管”云上自助新模式
Dataphin 是阿里巴巴旗下的一个智能数据建设与治理平台,旨在帮助企业构建高效、可靠、安全的数据资产。在V4.1版本升级中,Dataphin 引入了Lindorm等多项新功能,并开启公共云半托管模式,优化代码搜索,为用户提供更加高效、灵活、安全的数据管理和运营环境,提升用户体验,促进企业数据资产的建设和价值挖掘。
1441 3
DataphinV4.1大升级: 支持Lindorm开启高性价比数据治理,迎来“公共云半托管”云上自助新模式