(3网络化部署)自己动手,编写神经网络程序,解决Mnist问题,并网络化部署

简介: 我们使用google提供的colab,对我们现有的GoNetwork进行适当修改,利用网络资源进行运算。一、什么是 Colaboratory? Colaboratory 是一款研究工具,用于进行机器学习培训和研究。
我们使用google提供的colab,对我们现有的GoNetwork进行适当修改,利用网络资源进行运算。

一、什么是 Colaboratory?
Colaboratory 是一款研究工具,用于进行机器学习培训和研究。它是一个 Jupyter 笔记本环境,不需要进行任何设置就可以使用。       
二、什么是 Jupyter
Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本。
三、使用Jupyter
Anaconda中自己带有Jupyter,启动后新建页面(具体内容可以参考相关资料)
img_cf30906c2da5cbd4add17ca8e579abdc.png
这里我推荐的是,首先在本机,使用jupyter编写成功代码,而后放到colab上进行离线运行。现在colab一次可以提供12小时的GPU加速(也就是最多连续训练12小时),还是相当不错的。
四、修改数据集的获取
在所有代码的修改中,以数据集的获取修改最为复杂。如果是jupyter,我们可以直接获取本机已经下载成功的数据集,但是对于colab,则无法获取本机数据,当然我们可以读取Google硬盘中的数据,但是这个过程比较麻烦。这里借鉴并且使用了keras获取数据集的相关代码,直接从Github上(或其他官网上)下载数据集,为我所用。由于相当于Google下载数据,所以速度非常快。
其中,keras下载数据集为这段
from keras.utils.data_utils import get_file
path='mnist.npz'
path = get_file(path,origin='https://s3.amazonaws.com/img-datasets/mnist.npz',file_hash='8a61469f7ea1b51cbae51d4f78837e45')
print(path)

由于keras是系统内置库,所以这段代码可以直接引用。我们需要修改的就是将mnist的地址修改掉,这个最好 从github上寻找,注意是这个地方
img_b189a543412325b3649b0e47c164e21a.png
修改后变成这样,我还添加了一段打印的代码
#打开Mnist数据
def load_data():
    path='mnist2.pkl.gz'
    path = get_file(path,origin='https://github.com/mnielsen/neural-networks-and-deep-learning/raw/master/data/mnist.pkl.gz')
    print(path)
    f = gzip.open(path, 'rb')
    training_data, validation_data, test_data = pickle.load(f, encoding="latin1")
五、修改其他代码
其他代码的修改,主要目的是将所有代码融合到一起去(因为jupyter一次只能运行一个单元格内容)。完成后类似:
# %load D:/dl4cv/GoNetwork/GoNetwork.py
# %load network.py

"""
network.py
~~~~~~~~~~
IT WORKS

A module to implement the stochastic gradient descent learning
algorithm for a feedforward neural network.  Gradients are calculated
using backpropagation.  Note that I have focused on making the code
simple, easily readable, and easily modifiable.  It is not optimized,
and omits many desirable features.
jsxyhelu添加了适当的中文注释
"
""

#### Libraries
# Standard library
import random
# Third-party libraries
import numpy as np

class GoNetwork(object):

    def __init__(self, sizes):
        """size代表的是网络的分层结构,比如[2, 3, 1]
        The list ``sizes`` contains the number of neurons in the
        respective layers of the network.  For example, if the list
        was [2, 3, 1] then it would be a three-layer network, with the
        first layer containing 2 neurons, the second layer 3 neurons,
        and the third layer 1 neuron.  The biases and weights for the
        network are initialized randomly, using a Gaussian
        distribution with mean 0, and variance 1.  Note that the first
        layer is assumed to be an input layer, and by convention we
        won't set any biases for those neurons, since biases are only
        ever used in computing the outputs from later layers."
""
        self.num_layers = len(sizes) #层数
        self.sizes = sizes #每层size
        self.biases = [np.random.randn(y, 1) for y in sizes[1:]]   #随机生成子节点
        # net.weights[1] 是⼀个存储着连接第⼆层和第三层神经元权重的 Numpy 矩阵。
        self.weights = [np.random.randn(y, x)
                        for x, y in zip(sizes[:-1], sizes[1:])]
        
    #前向网络,主要用于测试当前网络                      
    def feedforward(self, a):
        """Return the output of the network if ``a`` is input."""
        for b, w in zip(self.biases, self.weights):
            a = sigmoid(np.dot(w, a)+b)
        return a
    #随机梯度下降算法
    def SGD(self, training_data, epochs, mini_batch_size, eta,
            test_data=None):
        """Train the neural network using mini-batch stochastic
        gradient descent.  The ``training_data`` is a list of tuples
        ``(x, y)`` representing the training inputs and the desired
        outputs.  The other non-optional parameters are
        self-explanatory.  If ``test_data`` is provided then the
        network will be evaluated against the test data after each
        epoch, and partial progress printed out.  This is useful for
        tracking progress, but slows things down substantially."
""

        training_data = list(training_data)
        n = len(training_data)

        if test_data:
            test_data = list(test_data)
            n_test = len(test_data)
        #⾸先随机地将训练数据打乱
        for j in range(epochs):
            random.shuffle(training_data)
            #再将它分成多个适当⼤⼩的⼩批量数据
            mini_batches = [
                training_data[k:k+mini_batch_size]
                for k in range(0, n, mini_batch_size)]
            #最主要的一行代码
            for mini_batch in mini_batches:
                self.update_mini_batch(mini_batch, eta)
            if test_data:
                print("Epoch {} : {} / {}".format(j,self.evaluate(test_data),n_test))
            else:
                print("Epoch {} complete".format(j))

    #根据单次梯度下降的迭代更新⽹络的权重和偏置
    def update_mini_batch(self, mini_batch, eta):
        """Update the network's weights and biases by applying
        gradient descent using backpropagation to a single mini batch.
        The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``
        is the learning rate."
""
        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]
        for x, y in mini_batch:
            delta_nabla_b, delta_nabla_w = self.backprop(x, y)
            nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
            nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
        self.weights = [w-(eta/len(mini_batch))*nw
                        for w, nw in zip(self.weights, nabla_w)]
        self.biases = [b-(eta/len(mini_batch))*nb
                       for b, nb in zip(self.biases, nabla_b)]

    #反向传播就是一种快速计算代价函数梯度的方法,也就是计算delta的一种方法
    def backprop(self, x, y):
        """Return a tuple ``(nabla_b, nabla_w)`` representing the
        gradient for the cost function C_x.  ``nabla_b`` and
        ``nabla_w`` are layer-by-layer lists of numpy arrays, similar
        to ``self.biases`` and ``self.weights``."
""
        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]
        # feedforward
        activation = x
        activations = [x] # list to store all the activations, layer by layer
        zs = [] # list to store all the z vectors, layer by layer
        for b, w in zip(self.biases, self.weights):
            z = np.dot(w, activation)+b
            zs.append(z)
            activation = sigmoid(z)
            activations.append(activation)
        # backward pass
        delta = self.cost_derivative(activations[-1], y) * sigmoid_prime(zs[-1]) #bp1
        nabla_b[-1] = delta  #bp3
        nabla_w[-1] = np.dot(delta, activations[-2].transpose())  #bp4
        # Note that the variable l in the loop below is used a little
        # differently to the notation in Chapter 2 of the book.  Here,
        # l = 1 means the last layer of neurons, l = 2 is the
        # second-last layer, and so on.  It's a renumbering of the
        # scheme in the book, used here to take advantage of the fact
        # that Python can use negative indices in lists.
        for l in range(2, self.num_layers):
            z = zs[-l]
            sp = sigmoid_prime(z)
            delta = np.dot(self.weights[-l+1].transpose(), delta) * sp #bp2,注意这里的+1,其实是计算了下一层了
            nabla_b[-l] = delta
            nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
        return (nabla_b, nabla_w)
    #evaluate评价函数
    def evaluate(self, test_data):
        """Return the number of test inputs for which the neural
        network outputs the correct result. Note that the neural
        network's output is assumed to be the index of whichever
        neuron in the final layer has the highest activation."
""
        test_results = [(np.argmax(self.feedforward(x)), y)
                        for (x, y) in test_data]
        return sum(int(x == y) for (x, y) in test_results)
    #cost代价函数
    def cost_derivative(self, output_activations, y):
        """Return the vector of partial derivatives \partial C_x /
        \partial a for the output activations."
""
        return (output_activations-y)

#########helper函数########
#计算sigmoid,这个函数来自定义
def sigmoid(z):
    """The sigmoid function."""
    return 1.0/(1.0+np.exp(-z))
#计算sigmoid的导数,这个函数可以被证明
def sigmoid_prime(z):
    """Derivative of the sigmoid function."""
    return sigmoid(z)*(1-sigmoid(z))

'''
GoDateSets:
GreenOpen 系列
引入数据集
by:jsxyhelu 2018/3/31
'
''
import pickle
import gzip
import numpy as np
from keras.utils.data_utils import get_file
#打开Mnist数据
def load_data():
    path='mnist2.pkl.gz'
    path = get_file(path,origin='https://github.com/mnielsen/neural-networks-and-deep-learning/raw/master/data/mnist.pkl.gz')
    print(path)
    f = gzip.open(path, 'rb')
    training_data, validation_data, test_data = pickle.load(f, encoding="latin1")
    f.close()
    return (training_data, validation_data, test_data)

#对读取的数据进行重新封装
def load_data_wrapper():
    tr_d, va_d, te_d = load_data()
    training_inputs = [np.reshape(x, (784, 1)) for x in tr_d[0]]
    training_results = [vectorized_result(y) for y in tr_d[1]]
    training_data = zip(training_inputs, training_results)
    validation_inputs = [np.reshape(x, (784, 1)) for x in va_d[0]]
    validation_data = zip(validation_inputs, va_d[1])
    test_inputs = [np.reshape(x, (784, 1)) for x in te_d[0]]
    test_data = zip(test_inputs, te_d[1])
    return (training_data, validation_data, test_data)

#返回OneHot图
def vectorized_result(j):
    e = np.zeros((10, 1))
    e[j] = 1.0
    return e

import numpy as np
import random

training_data, validation_data, test_data = load_data_wrapper()
training_data = list(training_data)
  
net = GoNetwork([784, 30, 10])
net.SGD(training_data, 30, 10, 3.0, test_data=test_data)
六、调整colab,运行代码
在jupyter上运行没有问题,则可以调整到colab上运行。首先我们需要使用GPU
img_d689dcd027c6f58261c663170617c24c.png

这里是运行结果截图。结果上来看,这里实现的是一个基础网络,只能达到95%的准确率。主要是我们使用colab,这样就可以使用GPU和网络资源了。
img_41ca218735ff5906458a51514be43799.png






目前方向:图像拼接融合、图像识别 联系方式:jsxyhelu@foxmail.com
目录
相关文章
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
|
3月前
|
Kubernetes Devops 持续交付
DevOps实践:使用Docker和Kubernetes实现持续集成和部署网络安全的守护盾:加密技术与安全意识的重要性
【8月更文挑战第27天】本文将引导读者理解并应用DevOps的核心理念,通过Docker和Kubernetes的实战案例,深入探讨如何在现代软件开发中实现自动化的持续集成和部署。文章不仅提供理论知识,还结合真实示例,旨在帮助开发者提升效率,优化工作流程。
|
1月前
|
安全 定位技术 数据安全/隐私保护
|
1月前
|
机器学习/深度学习 数据采集 算法
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。
56 0
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
|
1月前
|
机器学习/深度学习 存储 自然语言处理
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
深度学习入门:循环神经网络------RNN概述,词嵌入层,循环网络层及案例实践!(万字详解!)
|
1月前
|
安全 网络协议 IDE
使用Python编写网络扫描程序
使用Python编写网络扫描程序
|
3月前
|
存储 网络协议 安全
|
3月前
|
机器学习/深度学习 人工智能 编解码
【神经网络】基于对抗神经网络的图像生成是如何实现的?
对抗神经网络,尤其是生成对抗网络(GAN),在图像生成领域扮演着重要角色。它们通过一个有趣的概念——对抗训练——来实现图像的生成。以下将深入探讨GAN是如何实现基于对抗神经网络的图像生成的
37 3
|
3月前
|
机器学习/深度学习 网络安全 TensorFlow
探索操作系统的心脏:内核与用户空间的奥秘云计算与网络安全:技术挑战与未来趋势深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【8月更文挑战第29天】在数字世界的每一次点击与滑动背后,都隐藏着一个不为人知的故事。这个故事关于操作系统——计算机的灵魂,它如何协调硬件与软件,管理资源,并确保一切运行得井井有条。本文将带你走进操作系统的核心,揭示内核与用户空间的秘密,展现它们如何共同编织出我们日常数字生活的底层结构。通过深入浅出的讲解和代码示例,我们将一同解锁操作系统的神秘面纱,理解其对现代计算的重要性。 【8月更文挑战第29天】本文将深入探讨卷积神经网络(CNN)的基本原理和结构,以及它们如何被广泛应用于图像识别任务中。我们将通过代码示例来展示如何使用Python和TensorFlow库构建一个简单的CNN模型,并训练
|
3月前
|
存储 运维 安全
多云网络部署存在挑战,F5分布式云应用简化方案解读
多云网络部署存在挑战,F5分布式云应用简化方案解读
52 0
下一篇
无影云桌面