Spark的运行架构分析(一)之架构概述

简介: 1:Spark的运行模式 2:Spark中的一些名词解释 3:Spark的运行基本流程 4:RDD的运行基本流程 一:Spark的运行模式         Spark的运行模式多种多样,灵活多变,部署在单机上时,既可以用本地模式运行,也可以用伪分布模式运行,而当以分布式集群的方式部署时,也有众多的运行模式可供选择,这取决于集群的实际情况,底层的资源调度即可以依赖外部资源调度框架,也可以使用Spark内建的Standalone模式。

1:Spark的运行模式

2:Spark中的一些名词解释

3:Spark的运行基本流程

4:RDD的运行基本流程

一:Spark的运行模式

        Spark的运行模式多种多样,灵活多变,部署在单机上时,既可以用本地模式运行,也可以用伪分布模式运行,而当以分布式集群的方式部署时,也有众多的运行模式可供选择,这取决于集群的实际情况,底层的资源调度即可以依赖外部资源调度框架,也可以使用Spark内建的Standalone模式。对于外部资源调度框架的支持,目前的实现包括相对稳定的Mesos模式,以及还在持续开发更新中的hadoop YARN模式。

        在实际应用中,Spark应用程序的运行模式取决于传递给SparkContext 的Master环境变量的值,个别模式还需要依赖辅助的程序接口来配合使用,目前所支持的Master环境变量由特定的字符串或URL组成,如下:

       Local[N]:本地模式,使用N个线程

       Local cluster[worker,core,Memory]:伪分布模式,可以配置所需要启动的虚拟工作节点的数量,以及每个工作节点所管理的CPU数量和内存尺寸

       Spark://hostname:port :Standalone模式,需要部署Spark到相关节点,URL为Spark Master主机地址和端口

       Mesos://hostname:port:Mesos模式,需要部署Spark和Mesos到相关节点,URL为Mesos主机地址和端口

       YARN standalone/YARN cluster:YARN模式之一,主程序逻辑和任务都运行在YARN集群中

       YARN client:YARN模式二,主程序逻辑运行在本地,具体任务运行在YARN集群中

       Spark ON YARN模式图解(详细解释参考点击阅读):

       

二:Spark的一些名词解释

      

        Application:Spark中的Application和Hadoop MapReduce中的概念是相似的,指的是用户编写的Spark应用程序,内含了一个Driver功能的代码和分布在集群中多个节点上运行的Executor代码

       Driver ProgramSpark中的Driver即运行上述Applicationmain()函数并且创建SparkContext,其中创建SparkContext的目的是为了准备Spark应用程序的运行环境。在Spark中由SparkContext负责和ClusterManager通信,进行资源的申请、任务的分配和监控等;当Executor部分运行完毕后,Driver负责将SparkContext关闭。通常用SparkContext代表Driver

       通用的形式应该是这样的

package thinkgamer

import org.apache.spark.{SparkContext, SparkConf}
import org.apache.spark.SparkContext._

object WordCount{
  def main(args: Array[String]) {
    if (args.length == 0) {
      System.err.println("Usage: WordCount <file1>")
      System.exit(1)
    }

    val conf = new SparkConf().setAppName("WordCount")
    val sc = new SparkContext(conf)
    
    .....//此处写你编写的Spark代码

    sc.stop()
  }
}

       ExecutorApplication运行在Worker节点上的一个进程,该进程负责运行Task,并且负责将数据存在内存或者磁盘上,每个Application都有各自独立的一批Executor。在Spark on Yarn模式下,其进程名称为CoarseGrainedExecutorBackend,类似于Hadoop MapReduce中的YarnChild。一个CoarseGrainedExecutorBackend进程有且仅有一个executor对象,它负责将Task包装成taskRunner,并从线程池中抽取出一个空闲线程运行Task。每个CoarseGrainedExecutorBackend能并行运行Task的数量就取决于分配给它的CPU的个数了

       Cluster Mananger指的是在集群上获取资源的外部服务,目前有:

                    Ø  Standalone:Spark原生的资源管理,由Master负责资源的分配;

                    Ø  Hadoop Yarn:由YARN中的ResourceManager负责资源的分配;

       Worker集群中任何可以运行Application代码的节点,类似于YARN中的NodeManager节点。在Standalone模式中指的就是通过Slave文件配置的Worker节点,在Spark on Yarn模式中指的就是NodeManager节点

       Job包含多个Task组成的并行计算,往往由Spark Action催生,一个JOB包含多个RDD及作用于相应RDD上的各种Operation

       Starge每个Job会被拆分很多组Task,每组任务被称为Stage,也可称TaskSet,一个作业分为多个阶段

       Task被送到某个Executor上的工作任务

三:Spark的基本运行流程

    1:Spark的基本运行流程如下图:

       

         (1):构建Spark Application的运行环境,启动SparkContext

         (2):SparkContext向资源管理器(可以是Standalone,Mesos,Yarn)申请运行Executor资源,并启动StandaloneExecutorbackend,Executor向SparkContext申请Task

         (3):SparkContext将应用程序分发给Executor

         (4):SparkContext构建成DAG图,将DAG图分解成Stage、将Taskset发送给Task Scheduler,最后由Task Scheduler将Task发送给Executor运行

         (5):Task在Executor上运行,运行完释放所有资源

    2:Spark运行架构的特点

       (1):每个Application获取专属的executor进程,该进程在Application期间一直驻留,并以多线程方式运行Task。这种Application隔离机制是有优势的,无论是从调度角度看(每个Driver调度他自己的任务),还是从运行角度看(来自不同Application的Task运行在不同JVM中),当然这样意味着Spark Application不能跨应用程序共享数据,除非将数据写入外部存储系统

       (2):Spark与资源管理器无关,只要能够获取executor进程,并能保持相互通信就可以了

       (3):提交SparkContext的Client应该靠近Worker节点(运行Executor的节点),最好是在同一个Rack里,因为Spark Application运行过程中SparkContext和Executor之间有大量的信息交换,如果在远程集群中运行,最好使用RPC将SparkContext提交给集群,不要远离Worker运行SparkContext

       (4)Task采用了数据本地性和推测执行的优化机制

    3:DAGscheduler

        DAGScheduler把一个Spark作业转换成StageDAGDirected Acyclic Graph有向无环图),根据RDDStage之间的关系找出开销最小的调度方法,然后把StageTaskSet的形式提交给TaskScheduler,下图展示了DAGScheduler的作用:

         

   4:TaskScheduler

          DAGScheduler决定了Task的理想位置,并把这些信息传递给下层的TaskScheduler。此外,DAGScheduler还处理由于Shuffle数据丢失导致的失败,还有可能需要重新提交运行之前的Stage(非Shuffle数据丢失导致的Task失败由TaskScheduler处理)

    TaskScheduler维护所有TaskSet,当Executor向Driver发生心跳时,TaskScheduler会根据资源剩余情况分配相应的Task。另外TaskScheduler还维护着所有Task的运行标签,重试失败的Task。下图展示了TaskScheduler的作用:

在不同运行模式中任务调度器具体为:

(1):Spark on Standalone模式为TaskScheduler;

(2):YARN-Client模式为YarnClientClusterScheduler

(3):YARN-Cluster模式为YarnClusterScheduler

  四:RDD的运行基本流程

     那么RDD在Spark中怎么运行的?大概分为以下三步:

     1:创建RDD对象

     2:DAGScheduler模块介入运算,计算RDD之间的依赖关系,RDD之间的依赖关系就形成了DAG

     3:每一个Job被分为多个Stage。划分Stage的一个主要依据是当前计算因子的输入是否是确定的,如果是则将其分在同一个Stage,避免多个Stage之间的消息传递开销。

       

       以下面一个按 A-Z 首字母分类,查找相同首字母下不同姓名总个数的例子来看一下 RDD 是如何运行起来的

       

步骤 1 :创建 RDD  上面的例子除去最后一个 collect 是个动作,不会创建 RDD 之外,前面四个转换都会创建出新的 RDD 。因此第一步就是创建好所有 RDD( 内部的五项信息 ) 。

步骤 2 :创建执行计划 Spark 会尽可能地管道化,并基于是否要重新组织数据来划分 阶段 (stage) ,例如本例中的 groupBy() 转换就会将整个执行计划划分成两阶段执行。最终会产生一个 DAG(directed acyclic graph ,有向无环图 ) 作为逻辑执行计划。

 

步骤 3 :调度任务  将各阶段划分成不同的 任务 (task) ,每个任务都是数据和计算的合体。在进行下一阶段前,当前阶段的所有任务都要执行完成。因为下一阶段的第一个转换一定是重新组织数据的,所以必须等当前阶段所有结果数据都计算出来了才能继续。

假设本例中的 hdfs://names 下有四个文件块,那么 HadoopRDD 中 partitions 就会有四个分区对应这四个块数据,同时 preferedLocations会指明这四个块的最佳位置。现在,就可以创建出四个任务,并调度到合适的集群结点上。



在下一篇我们将会讨论YARN框架和Spark 的运行模式:http://blog.csdn.net/gamer_gyt/article/details/51833681

相关文章
|
5月前
|
人工智能 API 数据安全/隐私保护
Apifox 与 Apipost 的 API 文档引擎对比:底层架构、性能与可扩展性分析
深入探索市场上两大主流API工具——Apifox和Apipost的文档能力时,发现了令人惊讶的差距。这不仅仅是功能多寡的问题,更关乎开发效率与团队协作的质变。
|
2月前
|
Java API 开发工具
灵码产品演示:软件工程架构分析
本演示展示灵码对复杂软件项目的架构分析与文档生成能力。通过Qwen3模型,结合PlantUML,自动生成系统架构图、微服务时序图,并提取API接口文档,实现高效、智能的代码理解与文档输出。
219 5
|
2月前
|
存储 JSON 数据处理
ClkLog埋点与用户行为分析系统:架构升级与性能全面提升
随着越来越多企业在实际业务中使用 ClkLog,数据规模和分析需求也不断提升,部分用户日活已经超过10万,为了顺应这一趋势,ClkLog 秉持 “开放透明、持续演进”的理念,推出了迄今为止最重要的一次性能优化升级。新版本在大规模数据处理与复杂查询场景中,性能表现实现了跨越式提升。经过多轮研发与严格测试,新版本现已正式上线:在原有付费版 1.0 的基础上架构全面升级,并同步发布全新的 2.0 版本。为用户带来更强的性能与更广的适用场景。
|
1月前
|
分布式计算 Kubernetes 调度
Kubeflow-Spark-Operator-架构学习指南
本指南系统解析 Spark Operator 架构,涵盖 Kubebuilder 开发、控制器设计与云原生集成。通过四阶段学习路径,助你从部署到贡献,掌握 Kubernetes Operator 核心原理与实战技能。
152 0
|
3月前
|
存储 前端开发 JavaScript
如何开发设备管理系统中的经验分析报表板块 ?(附架构图+流程图+代码参考)
设备管理系统(EMS)助力企业高效管理设备生命周期,涵盖采购、维护到报废全流程。本文详解经验分析报表模块设计与开发,涵盖动态看板、点检、巡检、维修、保养及库存统计功能,提供代码示例与架构设计建议,提升设备管理效率与决策水平。
|
4月前
|
SQL JSON 分布式计算
Spark SQL架构及高级用法
Spark SQL基于Catalyst优化器与Tungsten引擎,提供高效的数据处理能力。其架构涵盖SQL解析、逻辑计划优化、物理计划生成及分布式执行,支持复杂数据类型、窗口函数与多样化聚合操作,结合自适应查询与代码生成技术,实现高性能大数据分析。
|
6月前
|
机器学习/深度学习 人工智能 算法
大型多模态推理模型技术演进综述:从模块化架构到原生推理能力的综合分析
该研究系统梳理了大型多模态推理模型(LMRMs)的技术发展,从早期模块化架构到统一的语言中心框架,提出原生LMRMs(N-LMRMs)的前沿概念。论文划分三个技术演进阶段及一个前瞻性范式,深入探讨关键挑战与评估基准,为构建复杂动态环境中的稳健AI系统提供理论框架。未来方向聚焦全模态泛化、深度推理与智能体行为,推动跨模态融合与自主交互能力的发展。
482 13
大型多模态推理模型技术演进综述:从模块化架构到原生推理能力的综合分析
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
3 秒音频也能克隆?拆解 Spark-TTS 架构的极致小样本学习
本文深入解析了 Spark-TTS 模型的架构与原理,该模型仅需 3 秒语音样本即可实现高质量的零样本语音克隆。其核心创新在于 BiCodec 单流语音编码架构,将语音信号分解为语义 Token 和全局 Token,实现内容与音色解耦。结合大型语言模型(如 Qwen 2.5),Spark-TTS 能直接生成语义 Token 并还原波形,简化推理流程。实验表明,它不仅能克隆音色、语速和语调,还支持跨语言朗读及情感调整。尽管面临相似度提升、样本鲁棒性等挑战,但其技术突破为定制化 AI 声音提供了全新可能。
543 35
|
5月前
|
运维 监控 数据可视化
一文详解:工业软件“低代码开发平台”技术架构研究与分析
本文围绕工业软件低代码开发平台的机遇与挑战,提出基于自动化引擎的技术架构,由工具链、引擎库、模型库、组件库、工业数据网关和应用门户组成。文章分析了其在快速开发、传统系统升级中的应用模式及价值,如缩短创新周期、降低试错成本、解决资源缺乏和提升创新可复制性,为我国工业软件产业发展提供参考和支持。
|
5月前
|
负载均衡 Java API
基于 Spring Cloud 的微服务架构分析
Spring Cloud 是一个基于 Spring Boot 的微服务框架,提供全套分布式系统解决方案。它整合了 Netflix、Zookeeper 等成熟技术,通过简化配置和开发流程,支持服务发现(Eureka)、负载均衡(Ribbon)、断路器(Hystrix)、API网关(Zuul)、配置管理(Config)等功能。此外,Spring Cloud 还兼容 Nacos、Consul、Etcd 等注册中心,满足不同场景需求。其核心组件如 Feign 和 Stream,进一步增强了服务调用与消息处理能力,为开发者提供了一站式微服务开发工具包。
616 0

热门文章

最新文章