Spark的运行架构分析(一)之架构概述

简介: 1:Spark的运行模式 2:Spark中的一些名词解释 3:Spark的运行基本流程 4:RDD的运行基本流程 一:Spark的运行模式         Spark的运行模式多种多样,灵活多变,部署在单机上时,既可以用本地模式运行,也可以用伪分布模式运行,而当以分布式集群的方式部署时,也有众多的运行模式可供选择,这取决于集群的实际情况,底层的资源调度即可以依赖外部资源调度框架,也可以使用Spark内建的Standalone模式。

1:Spark的运行模式

2:Spark中的一些名词解释

3:Spark的运行基本流程

4:RDD的运行基本流程

一:Spark的运行模式

        Spark的运行模式多种多样,灵活多变,部署在单机上时,既可以用本地模式运行,也可以用伪分布模式运行,而当以分布式集群的方式部署时,也有众多的运行模式可供选择,这取决于集群的实际情况,底层的资源调度即可以依赖外部资源调度框架,也可以使用Spark内建的Standalone模式。对于外部资源调度框架的支持,目前的实现包括相对稳定的Mesos模式,以及还在持续开发更新中的hadoop YARN模式。

        在实际应用中,Spark应用程序的运行模式取决于传递给SparkContext 的Master环境变量的值,个别模式还需要依赖辅助的程序接口来配合使用,目前所支持的Master环境变量由特定的字符串或URL组成,如下:

       Local[N]:本地模式,使用N个线程

       Local cluster[worker,core,Memory]:伪分布模式,可以配置所需要启动的虚拟工作节点的数量,以及每个工作节点所管理的CPU数量和内存尺寸

       Spark://hostname:port :Standalone模式,需要部署Spark到相关节点,URL为Spark Master主机地址和端口

       Mesos://hostname:port:Mesos模式,需要部署Spark和Mesos到相关节点,URL为Mesos主机地址和端口

       YARN standalone/YARN cluster:YARN模式之一,主程序逻辑和任务都运行在YARN集群中

       YARN client:YARN模式二,主程序逻辑运行在本地,具体任务运行在YARN集群中

       Spark ON YARN模式图解(详细解释参考点击阅读):

       

二:Spark的一些名词解释

      

        Application:Spark中的Application和Hadoop MapReduce中的概念是相似的,指的是用户编写的Spark应用程序,内含了一个Driver功能的代码和分布在集群中多个节点上运行的Executor代码

       Driver ProgramSpark中的Driver即运行上述Applicationmain()函数并且创建SparkContext,其中创建SparkContext的目的是为了准备Spark应用程序的运行环境。在Spark中由SparkContext负责和ClusterManager通信,进行资源的申请、任务的分配和监控等;当Executor部分运行完毕后,Driver负责将SparkContext关闭。通常用SparkContext代表Driver

       通用的形式应该是这样的

package thinkgamer

import org.apache.spark.{SparkContext, SparkConf}
import org.apache.spark.SparkContext._

object WordCount{
  def main(args: Array[String]) {
    if (args.length == 0) {
      System.err.println("Usage: WordCount <file1>")
      System.exit(1)
    }

    val conf = new SparkConf().setAppName("WordCount")
    val sc = new SparkContext(conf)
    
    .....//此处写你编写的Spark代码

    sc.stop()
  }
}

       ExecutorApplication运行在Worker节点上的一个进程,该进程负责运行Task,并且负责将数据存在内存或者磁盘上,每个Application都有各自独立的一批Executor。在Spark on Yarn模式下,其进程名称为CoarseGrainedExecutorBackend,类似于Hadoop MapReduce中的YarnChild。一个CoarseGrainedExecutorBackend进程有且仅有一个executor对象,它负责将Task包装成taskRunner,并从线程池中抽取出一个空闲线程运行Task。每个CoarseGrainedExecutorBackend能并行运行Task的数量就取决于分配给它的CPU的个数了

       Cluster Mananger指的是在集群上获取资源的外部服务,目前有:

                    Ø  Standalone:Spark原生的资源管理,由Master负责资源的分配;

                    Ø  Hadoop Yarn:由YARN中的ResourceManager负责资源的分配;

       Worker集群中任何可以运行Application代码的节点,类似于YARN中的NodeManager节点。在Standalone模式中指的就是通过Slave文件配置的Worker节点,在Spark on Yarn模式中指的就是NodeManager节点

       Job包含多个Task组成的并行计算,往往由Spark Action催生,一个JOB包含多个RDD及作用于相应RDD上的各种Operation

       Starge每个Job会被拆分很多组Task,每组任务被称为Stage,也可称TaskSet,一个作业分为多个阶段

       Task被送到某个Executor上的工作任务

三:Spark的基本运行流程

    1:Spark的基本运行流程如下图:

       

         (1):构建Spark Application的运行环境,启动SparkContext

         (2):SparkContext向资源管理器(可以是Standalone,Mesos,Yarn)申请运行Executor资源,并启动StandaloneExecutorbackend,Executor向SparkContext申请Task

         (3):SparkContext将应用程序分发给Executor

         (4):SparkContext构建成DAG图,将DAG图分解成Stage、将Taskset发送给Task Scheduler,最后由Task Scheduler将Task发送给Executor运行

         (5):Task在Executor上运行,运行完释放所有资源

    2:Spark运行架构的特点

       (1):每个Application获取专属的executor进程,该进程在Application期间一直驻留,并以多线程方式运行Task。这种Application隔离机制是有优势的,无论是从调度角度看(每个Driver调度他自己的任务),还是从运行角度看(来自不同Application的Task运行在不同JVM中),当然这样意味着Spark Application不能跨应用程序共享数据,除非将数据写入外部存储系统

       (2):Spark与资源管理器无关,只要能够获取executor进程,并能保持相互通信就可以了

       (3):提交SparkContext的Client应该靠近Worker节点(运行Executor的节点),最好是在同一个Rack里,因为Spark Application运行过程中SparkContext和Executor之间有大量的信息交换,如果在远程集群中运行,最好使用RPC将SparkContext提交给集群,不要远离Worker运行SparkContext

       (4)Task采用了数据本地性和推测执行的优化机制

    3:DAGscheduler

        DAGScheduler把一个Spark作业转换成StageDAGDirected Acyclic Graph有向无环图),根据RDDStage之间的关系找出开销最小的调度方法,然后把StageTaskSet的形式提交给TaskScheduler,下图展示了DAGScheduler的作用:

         

   4:TaskScheduler

          DAGScheduler决定了Task的理想位置,并把这些信息传递给下层的TaskScheduler。此外,DAGScheduler还处理由于Shuffle数据丢失导致的失败,还有可能需要重新提交运行之前的Stage(非Shuffle数据丢失导致的Task失败由TaskScheduler处理)

    TaskScheduler维护所有TaskSet,当Executor向Driver发生心跳时,TaskScheduler会根据资源剩余情况分配相应的Task。另外TaskScheduler还维护着所有Task的运行标签,重试失败的Task。下图展示了TaskScheduler的作用:

在不同运行模式中任务调度器具体为:

(1):Spark on Standalone模式为TaskScheduler;

(2):YARN-Client模式为YarnClientClusterScheduler

(3):YARN-Cluster模式为YarnClusterScheduler

  四:RDD的运行基本流程

     那么RDD在Spark中怎么运行的?大概分为以下三步:

     1:创建RDD对象

     2:DAGScheduler模块介入运算,计算RDD之间的依赖关系,RDD之间的依赖关系就形成了DAG

     3:每一个Job被分为多个Stage。划分Stage的一个主要依据是当前计算因子的输入是否是确定的,如果是则将其分在同一个Stage,避免多个Stage之间的消息传递开销。

       

       以下面一个按 A-Z 首字母分类,查找相同首字母下不同姓名总个数的例子来看一下 RDD 是如何运行起来的

       

步骤 1 :创建 RDD  上面的例子除去最后一个 collect 是个动作,不会创建 RDD 之外,前面四个转换都会创建出新的 RDD 。因此第一步就是创建好所有 RDD( 内部的五项信息 ) 。

步骤 2 :创建执行计划 Spark 会尽可能地管道化,并基于是否要重新组织数据来划分 阶段 (stage) ,例如本例中的 groupBy() 转换就会将整个执行计划划分成两阶段执行。最终会产生一个 DAG(directed acyclic graph ,有向无环图 ) 作为逻辑执行计划。

 

步骤 3 :调度任务  将各阶段划分成不同的 任务 (task) ,每个任务都是数据和计算的合体。在进行下一阶段前,当前阶段的所有任务都要执行完成。因为下一阶段的第一个转换一定是重新组织数据的,所以必须等当前阶段所有结果数据都计算出来了才能继续。

假设本例中的 hdfs://names 下有四个文件块,那么 HadoopRDD 中 partitions 就会有四个分区对应这四个块数据,同时 preferedLocations会指明这四个块的最佳位置。现在,就可以创建出四个任务,并调度到合适的集群结点上。



在下一篇我们将会讨论YARN框架和Spark 的运行模式:http://blog.csdn.net/gamer_gyt/article/details/51833681

目录
打赏
0
0
0
0
9
分享
相关文章
十大主流联邦学习框架:技术特性、架构分析与对比研究
联邦学习(FL)是保障数据隐私的分布式模型训练关键技术。业界开发了多种开源和商业框架,如TensorFlow Federated、PySyft、NVFlare、FATE、Flower等,支持模型训练、数据安全、通信协议等功能。这些框架在灵活性、易用性、安全性和扩展性方面各有特色,适用于不同应用场景。选择合适的框架需综合考虑开源与商业、数据分区支持、安全性、易用性和技术生态集成等因素。联邦学习已在医疗、金融等领域广泛应用,选择适配具体需求的框架对实现最优模型性能至关重要。
850 79
十大主流联邦学习框架:技术特性、架构分析与对比研究
湖仓分析|浙江霖梓基于 Doris + Paimon 打造实时/离线一体化湖仓架构
浙江霖梓早期基于 Apache Doris 进行整体架构与表结构的重构,并基于湖仓一体和查询加速展开深度探索与实践,打造了 Doris + Paimon 的实时/离线一体化湖仓架构,实现查询提速 30 倍、资源成本节省 67% 等显著成效。
湖仓分析|浙江霖梓基于 Doris + Paimon 打造实时/离线一体化湖仓架构
体育赛事即时比分 分析页面的开发技术架构与实现细节
本文基于“体育即时比分系统”开发经验总结,分享技术实现细节。系统通过后端(ThinkPHP)、前端(Vue.js)、移动端(Android/iOS)协同工作,解决实时比分更新、赔率同步及赛事分析展示等问题。前端采用 Vue.js 结合 WebSocket 实现数据推送,提升用户体验;后端提供 API 支持比赛数据调用;移动端分别使用 Java 和 Objective-C 实现跨平台功能。代码示例涵盖比赛分析页面、API 接口及移动端数据加载逻辑,为同类项目开发提供参考。
Spark Master HA 主从切换过程不会影响到集群已有作业的运行, 为什么?
Spark Master 的高可用性(HA)机制确保主节点故障时,备用主节点能无缝接管集群管理,保障稳定运行。关键在于: 1. **Driver 和 Executor 独立**:任务执行不依赖 Master。 2. **应用状态保持**:备用 Master 通过 ZooKeeper 恢复集群状态。 3. **ZooKeeper 协调**:快速选举新 Master 并同步状态。 4. **容错机制**:任务可在其他 Executor 上重新调度。 这些特性保证了集群在 Master 故障时仍能正常运行。
一文分析架构思维之建模思维
软件里的要素不是凭空出现的,都是源于实际的业务。本文从软件设计本源到建模案例系统的介绍了作者对于建模的思维和思考。
基于AI的实时监控系统:技术架构与挑战分析
AI视频监控系统利用计算机视觉和深度学习技术,实现实时分析与智能识别,显著提升高风险场所如监狱的安全性。系统架构包括数据采集、预处理、行为分析、实时决策及数据存储层,涵盖高分辨率视频传输、图像增强、目标检测、异常行为识别等关键技术。面对算法优化、实时性和系统集成等挑战,通过数据增强、边缘计算和模块化设计等方法解决。未来,AI技术的进步将进一步提高监控系统的智能化水平和应对复杂安全挑战的能力。
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
Apache Doris 是一个基于 MPP 架构的高性能实时分析数据库,以其极高的速度和易用性著称。它支持高并发点查询和复杂分析场景,适用于报表分析、即席查询、数据仓库和数据湖查询加速等。最新发布的 2.0.2 版本在性能、稳定性和多租户支持方面有显著提升。社区活跃,已广泛应用于电商、广告、用户行为分析等领域。
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
后端架构演进:微服务架构的优缺点与实战案例分析
【10月更文挑战第28天】本文探讨了微服务架构与单体架构的优缺点,并通过实战案例分析了微服务架构在实际应用中的表现。微服务架构具有高内聚、低耦合、独立部署等优势,但也面临分布式系统的复杂性和较高的运维成本。通过某电商平台的实际案例,展示了微服务架构在提升系统性能和团队协作效率方面的显著效果,同时也指出了其带来的挑战。
183 4
Apache Spark & Paimon Meetup · 北京站,助力 LakeHouse 架构生产落地
2024年11月15日13:30北京市朝阳区阿里中心-望京A座-05F,阿里云 EMR 技术团队联合 Apache Paimon 社区举办 Apache Spark & Paimon meetup,助力企业 LakeHouse 架构生产落地”线下 meetup,欢迎报名参加!
187 3
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等