E-MapReduce Serverless Spark开发者评测

本文涉及的产品
大数据开发治理平台DataWorks,资源组抵扣包 750CU*H
函数计算FC,每月15万CU 3个月
简介: **EMR Serverless Spark测评概要**- 弹性处理大规模用户行为分析,提升产品优化与推荐精度。- 相比自建Spark集群,EMR Serverless Spark展现更高稳定性、性能,降低成本,简化运维。- 支持多种数据源,提供Spark SQL与DataFrame API,自动资源调度,适用于波动需求。- 文档清晰,但可增强特定场景指导与故障排查。- 建议优化监控、调度算法,增加内置分析工具,并强化与其他阿里云产品(如MaxCompute, DataWorks, QuickBI)的联动。- 全托管服务减轻运维负担,但资源管理、查询效率与兼容性仍有提升空间。

一、EMR Serverless Spark服务实践测评

1. 数据分析实践
用户行为分析:利用EMR Serverless Spark的弹性扩展能力,能够迅速处理大规模用户行为日志,进行实时分析,如点击流分析、用户路径分析等,有助于产品优化与个性化推荐。
标签画像构建:通过集成多样化数据源,运用Spark的高级分析功能,可高效构建用户标签体系,提升营销精准度和用户体验。

2. 与其他引擎及自建Spark集群比较
稳定性与性能:相比自建Spark集群,EMR Serverless Spark通过云原生优化,提供更稳定的运行环境和更高的执行效率,特别是与云存储(如OSS)集成的场景下,性能提升可达3 - 5倍。
运维:EMR Serverless Spark的0运维特性显著降低运营成本,用户无需关注基础设施配置、扩缩容等操作,极大简化了管理复杂度。

3. 成本与收益
成本效益:Serverless模式按需计费,作业完成后才计费,无闲置成本,适合波动性大的数据处理需求,显著降低了总体拥有成本(TCO)。
收益提升:一站式数据开发平台加速了数据价值的转化周期,快速响应市场变化,提升决策效率和业务创新能力。

二、EMR Serverless Spark服务体验评测

1. 产品内引导及文档帮助
在体验过程中,产品内引导相对清晰,文档覆盖也较为广泛,但针对特定场景的最佳实践案例和故障排查指南可以进一步丰富,以提升用户自助解决问题的能力。

2. 产品功能满足预期情况
接入便捷性:接入较为便捷,支持多种数据源接入,用户只需简单配置即可实现数据的快速导入和导出。
数据开发体验:支持标准的Spark SQL和DataFrame API,开发者可以轻松上手并高效完成数据处理任务。同时,提供了丰富的内置函数和UDF,进一步增强了数据处理能力。
弹性伸缩:能够根据业务需求自动调整计算资源,实现按需付费和成本优化。
其他功能:内置版本管理、开发与生产隔离,满足企业级开发与发布标准。

3. 产品改进及新增功能建议
增强实时监控与预警功能:增加更详细的性能指标监控和实时预警机制,以便用户能够及时发现并处理潜在的性能问题。
优化资源调度算法:在高并发场景下,进一步优化资源调度算法,确保在高负载情况下仍能保持稳定的性能表现。
增加更多内置数据分析工具:除基本的数据处理功能外,增加更多内置的数据分析工具,如机器学习算法库、图计算引擎等,以满足用户多样化的数据分析需求。

4. 与其他产品联动组合的可能性
与MaxCompute联动:可以无缝接入MaxCompute数据源,实现冷热数据的分离存储和高效处理,用户可在EMR Serverless Spark中进行实时或离线的数据处理任务,并将处理结果存储回MaxCompute中,以便后续的分析和挖掘。
与DataWorks联动:与DataWorks数据开发平台进行深度集成,用户可在DataWorks中设计数据开发流程,并将部分处理任务交由EMR Serverless Spark执行,充分发挥DataWorks的流程管理和EMR Serverless Spark的数据处理能力优势,提升整体数据处理效率。
与Quick BI联动:EMR Serverless Spark处理后的数据可以通过Quick BI进行数据可视化展示,使得数据分析结果更加直观和易于理解。

三、OLAP引擎的对比测评

1. 使用过的Spark引擎及体验
之前使用过一些Spark引擎,商业的和开源的都有。EMR Serverless Spark在满足业务需求方面,功能全面,性能出色,可扩展性强,多协议支持,效率也很高。

2. EMR Serverless Spark的优势
全托管特性,省去了运维的麻烦,用户无需维护硬件或软件,也不必担心集群的配置和管理。

3. 有待改进的地方
问题诊断:有时候任务挂了,找原因得费点劲,希望日志能更详细些。最好能有个智能诊断系统,一键定位问题所在。
资源需求预测和管理:虽然EMR Serverless Spark等环境提供了资源动态分配的功能,但在实际使用中,如何更精确地预测和管理资源需求仍然是一个挑战。
简单插入和查询效率:当下对于简单的插入和查询效率并不是很理想,对于一些复杂的查询操作,Spark SQL的查询优化器可能无法完全优化查询计划。此时,需要用户根据具体情况手动调整查询语句或优化查询计划。
兼容性和配置问题:虽然Spark SQL支持多种协议和接口与其他系统集成,但在实际部署和配置过程中可能会遇到一些兼容性和配置问题。需要用户具备相应的技术能力和经验来解决这些问题。
监控和诊断:对于大规模分布式系统来说,监控和诊断是保障系统稳定性和性能的重要手段。然而,在EMR Serverless Spark等环境中,如何实现对Spark SQL作业和OLAP引擎的实时监控和诊断仍然是一个需要改进的地方。

总体而言,EMR Serverless Spark在数据处理和分析方面具有一定的优势,但仍有一些改进的空间,希望在未来的发展中能够不断完善,为用户提供更好的服务。

相关实践学习
【AI破次元壁合照】少年白马醉春风,函数计算一键部署AI绘画平台
本次实验基于阿里云函数计算产品能力开发AI绘画平台,可让您实现“破次元壁”与角色合照,为角色换背景效果,用AI绘图技术绘出属于自己的少年江湖。
从 0 入门函数计算
在函数计算的架构中,开发者只需要编写业务代码,并监控业务运行情况就可以了。这将开发者从繁重的运维工作中解放出来,将精力投入到更有意义的开发任务上。
目录
相关文章
|
7月前
|
SQL 分布式计算 Serverless
鹰角网络:EMR Serverless Spark 在《明日方舟》游戏业务的应用
鹰角网络为应对游戏业务高频活动带来的数据潮汐、资源弹性及稳定性需求,采用阿里云 EMR Serverless Spark 替代原有架构。迁移后实现研发效率提升,支持业务快速发展、计算效率提升,增强SLA保障,稳定性提升,降低运维成本,并支撑全球化数据架构部署。
747 56
鹰角网络:EMR Serverless Spark 在《明日方舟》游戏业务的应用
|
7月前
|
分布式计算 运维 搜索推荐
立马耀:通过阿里云 Serverless Spark 和 Milvus 构建高效向量检索系统,驱动个性化推荐业务
蝉妈妈旗下蝉选通过迁移到阿里云 Serverless Spark 及 Milvus,解决传统架构性能瓶颈与运维复杂性问题。新方案实现离线任务耗时减少40%、失败率降80%,Milvus 向量检索成本降低75%,支持更大规模数据处理,查询响应提速。
377 57
|
5月前
|
人工智能 分布式计算 DataWorks
一体系数据平台的进化:基于阿里云 EMR Serverless Spark 的持续演进
本文介绍了一体系汽配供应链平台如何借助阿里云EMR Serverless Spark实现从传统Hadoop平台向云原生架构的迁移。通过融合高质量零部件供应与创新互联网科技,一体系利用EMR Serverless Spark和DataWorks构建高效数据分析体系,解决大规模数据处理瓶颈。方案涵盖实时数据集成、Lakehouse搭建、数仓分层设计及BI/ML应用支持,显著提升数据处理性能与业务响应速度,降低运维成本,为数字化转型奠定基础。最终实现研发效率提升、运维压力减轻,并推动AI技术深度整合,迈向智能化云原生数据平台。
220 4
|
5月前
|
分布式计算 运维 监控
Fusion 引擎赋能:流利说如何用阿里云 Serverless Spark 实现数仓计算加速
本文介绍了流利说与阿里云合作,利用EMR Serverless Spark优化数据处理的全过程。流利说是科技驱动的教育公司,通过AI技术提升用户英语水平。原有架构存在资源管理、成本和性能等痛点,采用EMR Serverless Spark后,实现弹性资源管理、按需计费及性能优化。方案涵盖数据采集、存储、计算到查询的完整能力,支持多种接入方式与高效调度。迁移后任务耗时减少40%,失败率降低80%,成本下降30%。未来将深化合作,探索更多行业解决方案。
307 1
|
1月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
390 29
|
2月前
|
存储 人工智能 Serverless
函数计算进化之路:AI 应用运行时的状态剖析
AI应用正从“请求-响应”迈向“对话式智能体”,推动Serverless架构向“会话原生”演进。阿里云函数计算引领云上 AI 应用 Serverless 运行时技术创新,实现性能、隔离与成本平衡,开启Serverless AI新范式。
396 12
|
5月前
|
存储 编解码 Serverless
Serverless架构下的OSS应用:函数计算FC自动处理图片/视频转码(演示水印添加+缩略图生成流水线)
本文介绍基于阿里云函数计算(FC)和对象存储(OSS)构建Serverless媒体处理流水线,解决传统方案资源利用率低、运维复杂、成本高等问题。通过事件驱动机制实现图片水印添加、多规格缩略图生成及视频转码优化,支持毫秒级弹性伸缩与精确计费,提升处理效率并降低成本,适用于高并发媒体处理场景。
310 0
|
7月前
|
人工智能 开发框架 安全
Serverless MCP 运行时业界首发,函数计算让 AI 应用最后一公里提速
作为云上托管 MCP 服务的最佳运行时,函数计算 FC 为阿里云百炼 MCP 提供弹性调用能力,用户只需提交 npx 命令即可“零改造”将开源 MCP Server 部署到云上,函数计算 FC 会准备好计算资源,并以弹性、可靠的方式运行 MCP 服务,按实际调用时长和次数计费,欢迎你在阿里云百炼和函数计算 FC 上体验 MCP 服务。
660 30
|
2月前
|
人工智能 运维 安全
聚焦 AI 应用基础设施,云栖大会 Serverless AI 全回顾
2025 年 9 月 26 日,为期三天的云栖大会在杭州云栖小镇圆满闭幕。随着大模型技术的飞速发展,我们正从云原生时代迈向一个全新的 AI 原生应用时代。为了解决企业在 AI 应用落地中面临的高成本、高复杂度和高风险等核心挑战,阿里云基于函数计算 FC 发布一系列重磅服务。本文将对云栖大会期间 Serverless+AI 基础设施相关内容进行全面总结。

热门文章

最新文章