Python与Apache Spark:实时AI的大数据引擎——Spark Streaming实战

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 7月更文挑战第9天

讨如何将Python与Apache Spark结合起来,特别是利用Spark Streaming处理实时数据流中的AI任务。Spark Streaming是一个强大的工具,能够实现实时数据处理,非常适合大规模的数据流分析和机器学习任务。

第一步:环境配置

安装Spark:确保已经安装了Apache Spark,包括其Python接口pyspark和相关的依赖库。
启动Spark集群:如果你在本地运行,可以通过spark-submit命令启动;如果是Docker或YARN,需相应地配置。
第二部分:设置Spark Streaming

导入必要库:pyspark.sql, pyspark.streaming, pyspark.ml等。
初始化SparkSession:这是连接到Spark集群的主要入口点。
from pyspark.sql import SparkSession
from pyspark.sql.functions import window, col
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
第三步:数据源与数据处理

设置数据源:如Kafka、Flume、Twitter等。创建一个DataFrame来读取实时数据流。
data_stream = spark \
.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "localhost:9092") \
.option("subscribe", "your-topic") \
.load()
第四部分:实时特征工程与模型训练

对实时数据进行预处理,例如使用窗口函数(window)聚合数据。
使用VectorAssembler将特征合并为向量,便于机器学习模型处理。
assembler = VectorAssembler(
inputCols=[...], # 输入列名列表
outputCol="features"
)
input_df = assembler.transform(data_stream)
运行一个滚动窗口的ML Pipeline,训练和更新模型。
windowed_df = input_df.withWatermark("timestamp", "1 minute")
lr_model = LogisticRegression(featuresCol="features", labelCol="label")
pipeline = Pipeline(stages=[assembler, lr_model])
model = pipeline.fit(windowed_df)
prediction = model.transform(windowed_df)
第五部分:实时预测与结果展示

将预测结果写入另一个数据源,如Kafka,或实时显示在UI上。
output = prediction.selectExpr("prediction", "raw_data.*")
output.writeStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "localhost:9092") \
.option("topic", "predictions") \
.start()
第六部分:监控与优化

使用Spark UI或第三方工具(如Prometheus和Grafana)持续监控实时任务的性能和模型准确性。
通过这个教程,你将了解如何在Python和Spark Streaming的结合中,处理实时数据流并在分布式环境中执行机器学习任务。记住,实时分析需要考虑到数据延迟和实时更新的挑战,以及如何有效地处理大量数据。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
25天前
|
人工智能 缓存 安全
算力引擎如何按下 AI 落地加速键?
本文探讨了AI时代企业对算力的新需求及应对策略,涵盖高吞吐与实时性、向量数据库挑战、隐私保护与成本控制等关键议题。文章还分析了垂直场景下的算力解决方案,如PolarDB的“Data+AI”理念和身份安全领域的多模态检测系统。同时介绍了英特尔至强六代处理器与阿里云G9i实例的创新实践,并展望了AI未来发展趋势,强调降低门槛、多元算力生态建设及端到端工程化思维的重要性。
|
1月前
|
机器学习/深度学习 人工智能 算法
别再只看病了,来看看“大数据+AI”是怎么救命的!
别再只看病了,来看看“大数据+AI”是怎么救命的!
65 1
|
1月前
|
人工智能 分布式计算 大数据
大数据& AI 产品月刊【2025年4月】
大数据& AI 产品技术月刊【2025年4月】,涵盖4月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
2月前
|
数据采集 机器学习/深度学习 人工智能
面向 MoE 和推理模型时代:阿里云大数据 AI 产品升级发布
2025 AI 势能大会上,阿里云大数据 AI 平台持续创新,贴合 MoE 架构、Reasoning Model 、 Agentic RAG、MCP 等新趋势,带来计算范式变革。多款大数据及 AI 产品重磅升级,助力企业客户高效地构建 AI 模型并落地 AI 应用。
|
21天前
|
人工智能 监控 数据挖掘
6/14 上海,Apache Doris x 阿里云 SelectDB AI 主题线下 Meetup 正式开启报名!
6 月 14 日,由 Apache Doris 社区、飞轮科技、阿里云联合发起的湖仓数智融合、AI 洞见未来:Apache Doris x 阿里云 SelectDB 联合 Meetup 将在上海·汇付天下总部大楼正式开启,邀您一同探索 AI 与数据分析的融合实践!
215 76
|
26天前
|
人工智能 安全 Shell
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
113 2
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
|
1月前
|
机器学习/深度学习 人工智能 算法
破解生成式AI认知边界:框架思维引擎如何重塑产业智能化未来
该内容深入解析了核心技术架构,涵盖思维链强化系统(DTT)、认知框架建模体系和实时纠偏算法体系。DTT通过多级问题拆解、混合精度推理及分布式验证,大幅提升复杂问题处理能力;认知框架结合知识图谱与逻辑推理,实现精准医疗诊断等应用;实时纠偏算法则通过多级验证机制保障事实与逻辑准确性。整体架构分应用层、框架层和基础层,支持高效、可信的跨领域适配。技术创新体现在混合计算加速、持续学习机制等方面,显著优于传统模型,在事实准确性、逻辑连续性及响应速度上优势明显。
92 28
|
26天前
|
人工智能 算法 自动驾驶
AI和大数据:是工具,还是操控人心的“隐形之手”?
AI和大数据:是工具,还是操控人心的“隐形之手”?
65 1
|
1月前
|
人工智能 Cloud Native 安全
云原生+AI 为企业出海提供全新技术引擎!明天见
5月22日 14:00「飞天发布时刻」,阿里云云原生应用平台产品负责人李国强将重磅揭晓面向 AI 场景的云原生产品体系升级,通过弹性智能的全球一体化架构、开箱即用的云原生 AI 工程化能力,为中国企业出海提供全新技术引擎。
|
1月前
|
存储 人工智能 搜索推荐

推荐镜像

更多