【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络

简介: 【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络

一、引言

要深入了解大模型底层原理,先要能手撸transformer模型结构,在这之前,pytorch、tensorflow等深度学习框架必须掌握,之前做深度学习时用的tensorflow,做aigc之后接触pytorch多一些,今天写一篇pytorch的入门文章吧,感兴趣的可以一起聊聊。

二、pytorch介绍

2.1 pytorch历史

PyTorch由facebook人工智能研究院研发,2017年1月被提出,是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序。PyTorch既可以看作加入了GPU支持的numpy,同时也可以看成一个拥有自动求导功能的强大的深度神经网络。

PyTorch的前身是Torch,其底层和Torch框架一样,但是使用Python重新写了很多内容,不仅更加灵活,支持动态图,而且提供了Python接口。它是由Torch7团队开发,是一个以Python优先的深度学习框架,不仅能够实现强大的GPU加速,同时还支持动态神经网络。

2.2 pytorch特点

Pytorch是一个python包,提供两个高级功能:

2.2.1 支持GPU加速的张量计算库

张量(tensor):可以理解为多位数组,是Pytorch的基本计算单元,Pytorch的特性就是可以基于GPU快速完成张量的计算,包括求导、切片、索引、数学运算、线性代数、归约等

import torch
import torch.nn.functional as F
 
# 1. 张量的创建
x = torch.tensor([[1, 2, 3], [4, 5, 6]])
y = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(x) #tensor([[1, 2, 3],[4, 5, 6]])
print(y) #tensor([[1, 2, 3],[4, 5, 6]])
 
# 2. 张量的运算
z=x+y
print(z) #tensor([[2, 4, 6],[8, 10, 12]])
 
# 3. 张量的自动求导
x = torch.tensor(3.0, requires_grad=True)
print(x.grad) #None
 
y = x**2 
y.backward()
print(x.grad) #tensor(6.)

2.2.2 包含自动求导系统的动态图机制

Pytorch提供了一种独一无二的构建神经网络的方式:动态图机制

不同于TensorFlow、Caffe、CNTK等静态神经网络:网络构建一次反复使用,如果修改了网络不得不重头开始。

在Pytorch中,使用了一种“反向模式自动微分的技术(reverse-mode auto-differentiation)”,允许在零延时或开销的情况下任意更改网络。

2.3 pytorch安装

这里建议大家采用conda创建环境,采用pip管理pytorch包

1.建立名为pytrain,python版本为3.11的conda环境

conda create -n pytrain python=3.11
conda activate pytrain

 

2.采用pip下载torch和torchvision包

pip install torch  torchvision torchmetrics  -i https://mirrors.cloud.tencent.com/pypi/simple

这里未指定版本,默认下载最新版本torch-2.3.0、torchvision-0.18.0以及其他一堆依赖。

三、pytorch实战

动手实现一个三层DNN网络:

3.1 引入依赖的python库

这里主要是torch、torch.nn网络、torch.optim优化器、torch.utils.data数据处理等

import torch # 导入pytorch
import torch.nn as nn # 神经网络模块
import torch.optim as optim # 优化器模块
from torch.utils.data import DataLoader, TensorDataset # 数据集模块

3.2 定义三层神经网络

引入nn.Module类,编写构造函数定义网络结构,编写前向传播过程定义激活函数。

  1. 通过继承torch.nn.Module类,对神经网络层进行构造,Module类在pytorch中非常重要,他是所有神经网络层和模型的基类。
  2. 定义模型构造函数__init__:在这里定义网络结构,输入为每一层的节点数,采用torch.nn.Linear这个类,定义全连接线性层,进行线性变换,通过第一层节点输入数据*权重矩阵(n * [n,k] = k),加偏置项,再配以激活函数得到下一层的输入。
  3. 定义前向传播forward过程:采用relu、sigmod、tanh等激活函数,对每一层计算得到的原始值归一化输出。一般建议采用relu。sigmod的导数在0、1极值附近会接近于0,产生“梯度消失”的问题,较长的精度会导致训练非常缓慢,甚至无法收敛。relu导数一直为1,更好的解决了梯度消失问题。
# 定义三层神经网络模型
class ThreeLayerDNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(ThreeLayerDNN, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)  # 第一层全连接层
        self.fc2 = nn.Linear(hidden_size, hidden_size)  # 第二层全连接层
        self.fc3 = nn.Linear(hidden_size, output_size)  # 输出层
        self.sigmoid = nn.Sigmoid() # 二分类输出层使用Sigmoid激活函数
 
    def forward(self, x):
        x = torch.relu(self.fc1(x))  # 使用ReLU激活函数
        x = torch.relu(self.fc2(x))  # 中间层也使用ReLU激活函数
        x = torch.sigmoid(self.fc3(x)) # 二分类输出层使用Sigmoid激活函数
        return x

3.3 训练数据准备

  1. 定义输入的特征数、隐层节点数、输出类别数,样本数,
  2. 采用torch.randn、torch.randint函数构造训练数据,
  3. 采用TensorDataset、DataLoader类分别进行张量数据集构建以及数据导入
# 数据准备
input_size = 1000  # 输入特征数
hidden_size =  512 # 隐藏层节点数
output_size = 2  # 输出类别数
num_samples = 1000  # 样本数
# 示例数据,实际应用中应替换为真实数据
X_train = torch.randn(num_samples, input_size) 
y_train = torch.randint(0, output_size, (num_samples,))
 
# 数据加载
dataset = TensorDataset(X_train, y_train)
data_loader = DataLoader(dataset, batch_size=32, shuffle=True)

3.4 实例化模型、定义损失函数与优化器

损失函数与优化器是机器学习的重要概念,先看代码,nn来自于torch.nn,optim来自于torch.optim,均为torch封装的工具类

# 实例化模型
model = ThreeLayerDNN(input_size, hidden_size, output_size)
 
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  # 适合分类问题
optimizer = optim.Adam(model.parameters(), lr=0.001)

损失函数:用于衡量模型预测值与真实值的差距,是模型优化的目标。常见损失函数为

  • 均方误差损失(MSE):用于回归问题,衡量预测值与真实值之间的平方差的平均值。
  • 交叉熵损失(Cross Entropy Loss):用于分类问题,衡量预测概率分布与真实分布之间的差距。
  • 二进制交叉熵损失(Binary Cross-Entropy Loss):是一种用于二分类任务的损失函数,通常用于测量模型的二分类输出与实际标签之间的差距,不仅仅应用于0/1两个数,0-1之间也都能学习

优化器:优化算法用于调整模型参数,以最小化损失函数。常见的优化算法为

  • 随机梯度下降(SGD):通过对每个训练样本计算梯度并更新参数,计算简单,但可能会陷入局部最优值。
  • Adam:结合了动量和自适应学习率调整的方法,能够快速收敛且稳定性高,广泛应用于各种深度学习任务。

3.5 启动训练,迭代收敛

模型训练可以简单理解为一个“双层for循环”

第一层for循环:迭代的轮数,这里是10轮

       第二层for循环:针对每一条样本,前、后向传播迭代一遍网络,1000条样本就迭代1000次。

所以针对10轮迭代,每轮1000条样本,要迭代网络10*1000=10000次。

# 训练循环
num_epochs = 10
for epoch in range(num_epochs):
    model.train()  # 设置为训练模式
    running_loss = 0.0
    for i, (inputs, labels) in enumerate(data_loader, 0):
        optimizer.zero_grad()  # 清零梯度
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()  # 反向传播
        optimizer.step()  # 更新权重
 
        running_loss += loss.item()
    print(f'Epoch {epoch + 1}, Loss: {running_loss / (i + 1)}')
 
print('Training finished.')

运行后可以看到loss逐步收敛:

3.6 模型评估

通过引入torchmetrics库对模型效果进行评估,主要分为以下几步

  1. 构造测试集数据;
  2. 测试集数据加载;
  3. 将模型切至评估模式;
  4. 初始化模型准确率与召回率的计算器;
  5. 循环测试样本,更新准确率与召回率计算器;
  6. 打印输出
import torchmetrics # 导入torchmetrics
 
test_num_samples = 200  # 测试样本数
test_X_train = torch.randn(test_num_samples, input_size) 
test_y_train = torch.randint(0, output_size, (test_num_samples,))
 
# 数据加载
test_dataset = TensorDataset(test_X_train,test_y_train)
test_data_loader = DataLoader(test_dataset, batch_size=32, shuffle=True)
 
# 在模型训练完成后进行评估
# 首先,我们需要确保模型在评估模式下
model.eval()
 
# 初始化准确率和召回率的计算器
accuracy = torchmetrics.Accuracy(task="multiclass", num_classes=output_size)
recall = torchmetrics.Recall(task="multiclass", num_classes=output_size)
 
with torch.no_grad():  # 确保在评估时不进行梯度计算
    for inputs, labels in test_data_loader:
        outputs = model(inputs)
        preds = torch.softmax(outputs, dim=1)
        # 更新指标计算器
        accuracy.update(preds, labels)
        recall.update(preds, labels)
 
# 打印准确率和召回率
print(f'Accuracy: {accuracy.compute():.4f}')
print(f'Recall: {recall.compute():.4f}')
 
print('Evaluation finished.')

运行后,可以输出模型的准确率与召回率,由于采用随机生成的测试数据且迭代轮数较少,具体数值不错参考,可以根据自己需要丰富数据。

3.7 可以直接跑的代码

附可以直接运行的代码,先跑起来,再一行行研究!

import torch # 导入pytorch
import torch.nn as nn # 神经网络模块
import torch.optim as optim # 优化器模块
from torch.utils.data import DataLoader, TensorDataset # 数据集模块
 
 
# 定义三层神经网络模型
class ThreeLayerDNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(ThreeLayerDNN, self).__init__()
        self.fc1 = nn.Linear(input_size, hidden_size)  # 第一层全连接层
        self.fc2 = nn.Linear(hidden_size, hidden_size)  # 第二层全连接层
        self.fc3 = nn.Linear(hidden_size, output_size)  # 输出层
        self.sigmoid = nn.Sigmoid() # 二分类输出层使用Sigmoid激活函数
 
    def forward(self, x):
        x = torch.relu(self.fc1(x))  # 使用ReLU激活函数
        x = torch.relu(self.fc2(x))  # 中间层也使用ReLU激活函数
        x = torch.sigmoid(self.fc3(x)) # 二分类输出层使用Sigmoid激活函数
        return x
 
# 数据准备
input_size = 1000  # 输入特征数
hidden_size =  512 # 隐藏层节点数
output_size = 2  # 输出类别数
num_samples = 1000  # 样本数
# 示例数据,实际应用中应替换为真实数据
X_train = torch.randn(num_samples, input_size) 
y_train = torch.randint(0, output_size, (num_samples,))
 
# 数据加载
dataset = TensorDataset(X_train, y_train)
data_loader = DataLoader(dataset, batch_size=32, shuffle=True)
 
# 实例化模型
model = ThreeLayerDNN(input_size, hidden_size, output_size)
 
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  # 适合分类问题
optimizer = optim.Adam(model.parameters(), lr=0.001)
 
# 训练循环
num_epochs = 10
for epoch in range(num_epochs):
    model.train()  # 设置为训练模式
    running_loss = 0.0
    for i, (inputs, labels) in enumerate(data_loader, 0):
        optimizer.zero_grad()  # 清零梯度
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()  # 反向传播
        optimizer.step()  # 更新权重
 
        running_loss += loss.item()
    print(f'Epoch {epoch + 1}, Loss: {running_loss / len(data_loader)}')
 
print('Training finished.')
 
#for param in model.parameters():
#    print(param.data)
 
 
import torchmetrics # 导入torchmetrics
 
test_num_samples = 200  # 测试样本数
test_X_train = torch.randn(test_num_samples, input_size) 
test_y_train = torch.randint(0, output_size, (test_num_samples,))
 
# 数据加载
test_dataset = TensorDataset(test_X_train,test_y_train)
test_data_loader = DataLoader(test_dataset, batch_size=32, shuffle=True)
 
# 在模型训练完成后进行评估
# 首先,我们需要确保模型在评估模式下
model.eval()
 
# 初始化准确率和召回率的计算器
accuracy = torchmetrics.Accuracy(task="multiclass", num_classes=output_size)
recall = torchmetrics.Recall(task="multiclass", num_classes=output_size)
 
with torch.no_grad():  # 确保在评估时不进行梯度计算
    for inputs, labels in test_data_loader:
        outputs = model(inputs)
        # 将输出通过softmax转换为概率分布(虽然CrossEntropyLoss内部做了,但这里为了计算指标明确显示)
        preds = torch.softmax(outputs, dim=1)
        # 更新指标计算器
        accuracy.update(preds, labels)
        recall.update(preds, labels)
 
# 打印准确率和召回率
print(f'Accuracy: {accuracy.compute():.4f}')
print(f'Recall: {recall.compute():.4f}')
 
print('Evaluation finished.')

四、总结

本文先对pytorch深度学习框架历史、特点及安装方法进行介绍,接下来基于pytorch带读者一步步开发一个简单的三层神经网络程序,最后附可执行的代码供读者进行测试学习。个人感觉网络结构部分比tensorflow稍微抽象一点点,不过各有优劣吧,初学者最好对比着学习。下一篇写tensorflow吧,一起讲了大家可以对比着看。喜欢的话期待您的关注、点赞、收藏,您的互动是对我最大的鼓励!

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
2天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
90 55
|
6天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
9天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
12天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
39 3
|
14天前
|
存储 安全 网络安全
网络安全的盾与剑:漏洞防御与加密技术的实战应用
在数字化浪潮中,网络安全成为保护信息资产的重中之重。本文将深入探讨网络安全的两个关键领域——安全漏洞的防御策略和加密技术的应用,通过具体案例分析常见的安全威胁,并提供实用的防护措施。同时,我们将展示如何利用Python编程语言实现简单的加密算法,增强读者的安全意识和技术能力。文章旨在为非专业读者提供一扇了解网络安全复杂世界的窗口,以及为专业人士提供可立即投入使用的技术参考。
|
16天前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
50 7
|
21天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
44 8
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
69 7
|
18天前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
25 1

热门文章

最新文章