Python实现Naive Bayes贝叶斯分类模型(GaussianNB、MultinomialNB算法)项目实战

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: Python实现Naive Bayes贝叶斯分类模型(GaussianNB、MultinomialNB算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

image.png

image.png

1.项目背景

分类是数据挖掘领域最重要的研究方向之一。在如今众多分类模型中,最广泛使用的是朴素贝叶斯模型,源于古典数学理论,具有坚实的数学基础及算法简

单直观、易实现、时空开销小、强健壮性等优点。贝叶斯理论作为统计模型中的一个基本方法其理论的核心在于通过贝叶斯公式将数据总体、样本和先验信息结合在一起,从而由此求得未知参数的后验分布。因此根据贝叶斯理论,首先获得参数的先验概率和条件概率密度,其次根据贝叶斯公式,将参数的先验概率转换为后验概率,最后根据获得的参数后验概率进行分类和预测。 

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下

编号 

变量名称

描述

1

PassengerId

乘客编号

2

Survived

是否存活 目标变量 1-生存  0-死亡

3

Pclass

客舱等级 1=1等舱,2=2等舱,3=3等舱

4

Name

乘客姓名

5

Sex

乘客性别(Sex):男性male,女性female

6

Age

年龄

7

SibSp

同代直系亲属人数

8

Parch

不同代直系亲属人数

9

Ticket

船票编号

10

Fare

船票价格

11

Cabin

客舱号

12

Embarked

登船港口

出发地点:S=英国南安普顿Southampton

途径地点1:C=法国 瑟堡市Cherbourg

途径地点2:Q=爱尔兰 昆士敦Queenstown

数据详情如下(部分展示):

image.png

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

image.png

关键代码:

image.png

3.2查看数据集形状

使用Pandas工具的shape属性查看数据集的形状:

image.png

从上图可以看到,总共有891条数据,12个数据项。

关键代码:

image.png

3.3 去掉部分文本数据项

使用Pandas工具的drop方法去掉PassengerId、Name、Ticket、Cabin、Embarked这些数据项,关键代码:

image.png

3.4 特征数据项Sex文本数据处理

使用Pandas工具的where方法把Sex数据项转换为0、1数字,来满足机器学习的需要,关键代码:

image.png

3.5 缺失值数据查看

使用Pandas工具的isnull方法来查看数据项的缺失值情况,如下图:

image.png

关键代码:

image.png

4.探索性数据分析

4.1特征数据项Age的分布分析

image.png

从上图可以看出,人员的年龄分布在20~40岁之间。

年龄的缺失值使用均值填充,填充之后的分布分析如下:

image.png

从上图可以看出,经过均值填充之后,人员的年龄分布在30岁左右。

4.2 特征数据项Sex的分布分析

image.png

通过上图可以看出,女性生存的几率是大于男性的。

image.png

从上图可以看出,在生存的人员中女性是大于男性的。

image.png

从上图可以看出,在死亡的人员中男性是远远大于女性的。

4.3 特征数据项Pclass的分布分析

image.png

从上图可以看出,在3等舱死亡的最多,在1等舱生存的最多。

4.4 相关性分析

用Pandas工具的corr()方法 matplotlib seaborn进行相关性分析,结果如下:

image.png

通过上图可以看到,数据项之间的相关性比较弱,表明各个数据项之间比较独立。数据项之间正值是正相关/负值是负相关,数值越大 相关性越强。

5.特征工程

5.1 建立特征数据和标签数据

Survived为标签数据,除 Survived之外的为特征数据。关键代码如下:

image.png

5.2数据集拆分

训练集拆分,分为训练集和验证集,80%训练集和20%验证集。关键代码如下:

image.png  

5.3特征数据归一化

MinMaxScaler方法把数据进行归一化,关键代码如下:

image.png

6.构建贝叶斯分类模型

主要使用使用GaussianNBMultinomialNB算法,用于目标分类。

6.1建模

关键代码如下:

image.png

7.模型评估

7.1评估指标及结果

评估指标主要包括准确率、查准率、查全率、F1分值等等。

模型名称

指标名称

指标值

测试集

GaussianNB分类模型

准确率

0.7877

查准率

0.6962

查全率

0.7971

F1分值

0.7432

MultinomialNB分类模型

准确率

0.7821

查准率

0.7273

查全率

0.6957

F1分值

0.7111

从上表可以看出,准确率为79%  F1分值为70%。

关键代码如下: 

image.png

7.2 混淆矩阵

GaussianNB分类模型混淆矩阵:

image.png

从上图可以看到,实际值为1 预测为0的有14个;实际值为0  预测为1的有24个;这些是预测错误的。

MultinomialNB分类模型混淆矩阵:

image.png

从上图可以看到,实际值为1 预测为0的有21个;实际值为0  预测为1的有18个;这些是预测错误的。

7.3 分类报告

GaussianNB分类模型分类报告:

image.png

从上图可以看到,分类类型为0的F1分值为0.82;分类类型为1的F1分值为0.74;整个模型的准确率为0.79.

MultinomialNB分类模型分类报告:

image.png

从上图可以看到,分类类型为0的F1分值为0.83;分类类型为1的F1分值为0.71;整个模型的准确率为0.78.

7.4 ROC曲线

GaussianNB模型ROC曲线:

image.png

从上图可以看出AUC值为0.50

MultinomialNB模型ROC曲线:

image.png

从上图可以看出AUC值为0.80

8.结论与展望

综上所述,本文采用了贝叶斯分类模型,最终证明了我们提出的模型效果良好。

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/1ptSodz58nx503PIO-RjJYQ 
提取码:d15y

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
116 55
|
22天前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
125 67
|
22天前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
115 61
|
17天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
99 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
23天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
10天前
|
算法
基于模糊PI控制算法的龙格库塔CSTR模型控制系统simulink建模与仿真
本项目基于MATLAB2022a,采用模糊PI控制算法结合龙格-库塔方法,对CSTR模型进行Simulink建模与仿真。通过模糊控制处理误差及变化率,实现精确控制。核心在于将模糊逻辑与经典数值方法融合,提升系统性能。
|
10天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
23天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
20天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
79 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
下一篇
DataWorks